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The gravitational instability provides a means of rapidly forming giant planets

with large orbital radii. For protoplanetary disks to be unstable to gravitational

fragmentation, they must 1) have a Toomre Q . 1 and 2) be able to cool the excess

energy from a collapsing perturbation in less than the dynamical time (Ωtcool . 1).

We present an analytical technique for calculating this perturbation cooling time for

externally illuminated disks and/or disks with internal heating. We compare our

analytical technique with a numerical Monte Carlo code, and �nd good agreement.

We use our analytical technique to test the ability of the gravitational instability

to re-create the observed planetary systems of Fomalhaut, HR 8799, and HL Tau.

We �nd that the required mass interior to the planet's orbital radius is ∼ 0.1 M� for

Fomalhaut b, the protoplanet orbiting HL Tau, and the outermost planet of HR 8799.

The two inner planets of HR 8799 probably could not have formed in situ by disk

fragmentation.

The perturbation cooling time can be reduced signi�cantly through the inclusion

of geometrical e�ects, speci�cally fragmentation originating at a location other than

the disk mid-plane, and/or dust settling. In particular, dust settling to one-tenth

of the gas scale height can reduce the perturbation cooling below the fragmentation

threshold for all surface densities Σ . 103 g/cm2.
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We study the fragmentation criteria and fragment masses produced for a grid of

parameters covering protostellar masses ranging from 0.1�5 M�, ages ranging from

0.5�10 Myr, and di�ering degrees of dust settling. We �nd that the instability criteria

and fragment mass scales with protostellar mass (as expected), while the protostellar

age (i.e., luminosity) provides only a modest e�ect�indicating that disk fragmenta-

tion is equally likely at all stages of protostellar evolution, given su�ciently high disk

mass. Dust settling can lead to disk fragmentation at orbital radii that are an order

of magnitude smaller than in the unsettled case.
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Chapter 1

Introduction

As more extrasolar planets are discovered, we are increasingly pressed to describe

how planets can form in such a variety of environments. Until just recently, obser-

vational selection biases have resulted in the fact that all observed extrasolar planets

have been found to orbit within a few AU of their star (Butler et al., 2006). Since it

seems unlikely that these planets could have formed in situ (Mayor & Queloz, 1995),

planet migration is usually invoked (Alibert et al., 2005). Unfortunately, this means

that little is known about where�and hence how�these planets originally formed.

Recently, the technique of direct-imaging has begun to present us with a new set

of extrasolar planets that lie far from their star (Kalas et al., 2008; Marois et al.,

2008; Greaves et al., 2008). Like previous techniques, direct imaging preferentially

detects giant planets of several Jupiter masses. Furthermore, planet migration need

not be invoked to explain how these planets could form at their observed locations.

The goal of this dissertation is to evaluate the e�cacy of the gravitational in-

stability at forming giant planets with large orbital separation from their star. To

that end, we focus on the issue of radiative cooling, which is a key criterion for the

fragmentation of a gravitationally unstable disk.
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1.1 Planet Formation

One possible mechanism for giant planet formation is core accretion followed by

rapid gas accretion (Pollack et al., 1996; Inaba et al., 2003). In this mechanism,

planets begin their lives as micron-sized dust grains. During collisions, these grains

can stick together. Initially, the aggregate growth of grains depends on dipole-dipole

attraction, along with compaction.

Once these particles reach sizes of 10 cm, their fate becomes less clear. Experi-

mental work has shown that particle collisions begin to lead to severe fragmentation

once particle sizes reaches ∼ 10 cm (Blum & Wurm, 2008). Furthermore, meter-sized

objects are expected to experience signi�cant gas drag, leading to rapid accretion

onto the central star. Nonetheless, assuming su�cient size is reached (approximately

10 m), these planetesimals decouple from the gas, and begin to e�ciently sweep up

material. If a planetesimal is able to accrete enough mass (typically in the form of

ices), it begins to rapidly capture gas, ultimately becoming a gas giant planet. Less

massive objects become asteroids, comets, terrestrial planets, or dwarf planets, while

massive gas-starved objects become either ice giants or �super earths�.

While ideal for explaining �small� objects ranging from asteroids to terrestrial

planets, the core accretion mechanism has di�culty forming giant planets at large

radii. The primary reason for this is that the initial core accretion time scales as r3,

where r is the orbital radius of the planet (Ikoma et al., 2000; Kenyon & Bromley,

2008). Thus, while it may take ∼ 1 Myr to form a gas giant at 5 AU via core accretion,

it would take ∼ 1 Gyr for the same process at 50 AU�far longer than the ∼ 3 Myr

observed lifetimes of protoplanetary disks (Haisch et al., 2001).

Another mechanism for giant planet formation is disk fragmentation as a conse-

quence of the gravitational instability (Kuiper, 1951; Cameron, 1978; Boss, 1997, see

also the recent review by Durisen et al. 2007 and Stamatellos & Whitworth 2009 for

recent developments). Provided that the disk surface density is su�ciently large, this
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mechanism can form giant planetary embryos on time scales of a few orbital periods.

However, if the surface density is too large, the disk is unable to cool su�ciently

fast for fragmentation to take place at all (Ra�kov, 2005). The combination of these

requirements implies gravitational instability can only form massive planets at large

radii.

1.2 Disk Fragmentation

In order to be unstable to fragmentation, a disk �rst needs to have a large enough

surface density to be gravitationally unstable (Toomre, 1964). Such a disk will de-

velop spiral density waves. If in addition to this �rst requirement, there also exist lo-

cations in the disk where the radiative cooling timescale is shorter than the dynamical

timescale, the spiral density waves can proceed to collapse, leading to fragmentation

of the disk (Gammie, 2001; Rice et al., 2003; Ra�kov, 2005).

The gravitational stability of a thin, Keplerian disk is described by the Toomre

(1964) Q parameter

Q =
csΩ

πGΣ
, (1.1)

where cs is the isothermal sound speed, Ω =
√
GM?/r3 is the Keplerian frequency,

and Σ is the surface density. The disk becomes gravitationally unstable for Q . 1.

While the Toomre Q is relatively straight-forward to evaluate for a given disk, the

cooling constraint is somewhat more complex. From a timescale argument, a disk can

fragment if the cooling time is shorter than the dynamical time:

Ωtcool . 1 . (1.2)

At issue is that there are arguably two di�erent cooling timescales. The �rst

controls the onset and initial growth of fragmenting gravitational instabilities. We call
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this timescale the perturbation cooling time, since it represents the disk's e�ciency at

shedding excess internal energy. The second cooling timescale governs the subsequent

evolution of any produced fragments, and represents the time it would take for a disk

to radiate away all of its current internal energy. We call this second timescale the

total cooling time.

We wish to stress, however, that in a purely numerical approach (i.e., a hydro-

dynamical simulation), this distinction between perturbation and total cooling times

is a somewhat arbitrary choice, since either can be used to parametrize the radia-

tive cooling term in the �uid energy equation. Nonetheless, an analytic study of the

perturbation cooling time gives us insight into the dominant physical processes that

in�uence the onset of disk fragmentation.

The remainder of this dissertation is organized as follows. In Chapter 2, we develop

an analytic approximation for the perturbation cooling time for a circumstellar disk.

In Chapter 3, we compare our analytic approximation with a numerical Monte Carlo

code. In Chapter 4, we apply our technique for calculating perturbation cooling

times to the planetary systems of Fomalhaut, HR 8799, and HL Tau1 to derive the

required disk mass to form these planets. We also calculate fragment masses expected

to result from disk fragmentation and compare with the observed masses of these

planets. In Chapter 5, we extend our cooling time calculations to include the e�ects of

vertically displaced perturbations (e.g., arising from fragmentation along an inclined

orbit), along with the e�ects of dust settling. In Chapter 6, we further explore the

consequences of dust settling by �nding the instability criteria and expected fragment

masses for a range of stellar masses, ages, and di�erent degrees of dust settling.

We summarize our results in Chapter 7. In Appendix A, we present the detailed

mathematics of our iterative method for solving the boundary conditions described

1At the time of writing, there is still some debate concerning whether HL Tau b is actually a
background object.
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in Chapters 2 and 5. In Appendix B, we provide analytic solutions for selected

integrals of exponential integrals needed in Appendix A.
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Chapter 2

Perturbation Cooling Time

In thermal equilibrium, the temperature of a circumstellar disk is set by balancing

the local heating rate (incident stellar radiation plus viscous energy generation) with

the cooling rate (thermal emission). If the heating term is locally perturbed, e.g.

from energy released during the collapse of a point-like, self-gravitating clump, then

the temperature of the disk rises by an amount ∆T . The timescale for the system to

return to thermal equilibrium is

tcool =
∆E

∆L
, (2.1)

where tcool is the local perturbation cooling time, and ∆E and ∆L are the excess

internal energy and luminosity, respectively. Both ∆E and ∆L arise as a result of the

temperature perturbation ∆T . In contrast, the total cooling time ttot
cool = Etot/Ltot is

the timescale for the system to dissipate all of its internal energy. Note that unlike

the total cooling time, the perturbation cooling time automatically accounts for the

heating e�ects of external illumination.

In the thin disk approximation, cooling can only occur through the top and bottom

surfaces of the disk. Thus, for a given radius, we can treat the disk as a 1-D plane-
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parallel atmosphere. More explicitly,

tcool =
∆E

8π∆H0

, (2.2)

where ∆E is the excess internal energy per unit surface area, and ∆H0 ≡ (d∆L/dA)/8π

is the excess Eddington �ux at the disk surface. Writing ∆E in terms of ∆T ,

tcool =
1

8π∆H0

(
1

γ − 1

)
kB
µmH

ˆ τ0

−τ0

∆T

χ
dτ , (2.3)

where kB is Boltzmann's constant, γ and µ are the adiabatic constant and mean

molecular weight of the gas, mH is the mass of atomic Hydrogen, χ is the mean

opacity (absorption plus scattering), τ is the vertical optical depth coordinate, and τ0

and −τ0 are the values of τ at the top and bottom surfaces of the disk, respectively.

Note that we place τ = 0 at the disk mid-plane rather than at the top surface.

Consequently, the total optical depth of the disk is 2τ0.

We write the temperature perturbation ∆T in terms of the frequency-integrated

Planck function B and its perturbation ∆B,

∆T =
1

4

π

σT 3
m

(
B

Bm

)−3/4

∆B , (2.4)

where Tm and Bm are the temperature and Planck function at the disk mid-plane.

Substituting this into Equation (2.3), we obtain

tcool =
1

16

c2
m

γ − 1

1

σT 4
m

1

χ

ˆ τ0

0

(
B

Bm

)−3/4
∆B

∆H0

dτ , (2.5)

where cm =
√

(kBTm)/(µgmH) is the isothermal sound speed at the disk mid-plane.

In addition, we make the simplifying assumption that χ is independent of depth, and

is consequently well characterized by the mid-plane value. This is a good assump-
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tion when self-heating is small and the disk is approximately vertically isothermal.

However, when self-heating dominates (i.e., when there is a large vertical temperature

gradient), this assumption may begin to break down. This issue is further investigated

in Chapter 3. To �nd B and ∆B, we solve the equations of radiative transfer.

2.1 Radiative Transfer

In order to account for the absorption and reprocessing of external radiation, along

with viscous energy generation, we need to consider a minimum of two frequency

ranges. External corresponds to radiation emitted from the star and absorbed or

scattered by the disk. Di�use corresponds to radiation emitted by the disk as a result

of viscous energy generation or by re-emission of absorbed external radiation. For

simplicity, we assume gray opacity (i.e., the appropriate mean for both the external

and di�use radiation) and negligible thermal emission from the disk at the external

frequencies (i.e., the star and disk are at signi�cantly di�erent temperatures). Since

the transfer equation is linear, we can split it into two pieces.

µ
dIext

dτ ext
= Sext − Iext , (2.6)

µ
dIdiff

dτdiff
= Sdiff − Idiff , (2.7)

where here µ is the cosine of the angle between the propagation direction and the

unit normal to the disk surface, and Iext and Idiff are the mean intensities for the

external and di�use radiation, respectively. Note that the optical depth coordinates

τ ext and τdiff may be signi�cantly di�erent.
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The source functions S are given by

Sext =
σext

χext
Jext , (2.8)

Sdiff =
σdiffJdiff + κdiffB

χdiff
, (2.9)

where J is the mean intensity, and σ and κ are the scattering and absorptive opacities,

respectively. We set σext and κext equal to the frequency-dependent scattering and

absorption at the Wien peak of the star's e�ective temperature, and likewise, σdiff

and κdiff are set to their values at the Wien peak of the disk's mid-plane temperature.

We choose to work in terms of the di�use optical depth coordinate, so we use

τ ext = (χext/χdiff)τdiff to eliminate τ ext in favor of τdiff . Taking the µ-moments of the

transfer Equations (2.6) and (2.7), and using the Eddington factors f ext = Kext/Jext

and fdiff = Kdiff/Jdiff to close the set of equations, we arrive at the moment equations

dHext

dτ
= − κ

ext

χdiff
Jext , (2.10)

dJext

dτ
= −χ

ext

χdiff

Hext

f ext
, (2.11)

dHdiff

dτ
=

κdiff

χdiff

(
B − Jdiff

)
, (2.12)

dJdiff

dτ
= −H

diff

fdiff
, (2.13)

where H is the Eddington �ux.

We solve the external radiation �eld using the moment Equations (2.10) and

(2.11). The Eddington �ux is

Hext = Hext
0

sinh βτ

sinh βτ0

, (2.14)

where Hext
0 = Hext(τ0), and β ≡ κextχext/[(χdiff)2f ext]. Note that Hext

0 is the net sur-

face �ux and does not equal the incident irradiation, owing to the e�ects of scattering.
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This di�erence accounts for the albedo of the disk at the external frequencies. The

mean intensity is

Jext = −βχ
diff

κext
Hext

0

cosh βτ

sinh βτ0

. (2.15)

The di�use radiation �eld has three sources of energy: accretion luminosity Lacc

with surface �ux H0 = (dLacc/dA)/8π, absorption of external radiation −dHext/dτ ,

and the point-source perturbation at the mid-plane ∆H0δ(τ). The Eddington �ux is

thus

Hdiff = H0
τ

τ0

−Hext + ∆H0 sgn(τ) . (2.16)

From moment Equation (2.13), the mean intensity is

Jdiff = Jdiff(τ0) +
1

fdiff

ˆ τ0

τ

Hdiff dt

= H0

(
τ 2

0 − τ 2

2fdiffτ0

+
1

gdiff

)
−Hext

0

(
cosh βτ0 − cosh βτ

βfdiff sinh βτ0

+
1

gdiff

)
+∆H0

(
τ0 − |τ |
fdiff

+
1

gdiff

)
, (2.17)

where the second Eddington factor gdiff = Hdiff(τ0)/Jdiff(τ0). The condition of ra-

diative equilibrium (moment Equation [2.12]) gives the Planck Function in terms of

Hdiff and Jdiff

B = Jdiff +
χdiff

κdiff

dHdiff

dτ

= Jdiff +
χdiff

κdiff

H0

τ0

+
κext

κdiff
Jext + 2

χdiff

κdiff
∆H0δ(τ) . (2.18)

Subtracting B(∆H0 = 0), we �nd the perturbation

∆B = ∆H0

(
τ0 − |τ |
fdiff

+
1

gdiff
+ 2

χdiff

κdiff
δ(τ)

)
. (2.19)
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Plugging this result into the cooling time (eq. [2.5]), we �nd the expression

tcool =
1

16

c2
m

γ − 1

1

σT 4
m

1

χdiff

[ˆ τ0

0

(
B

Bm

)−3/4(
τ0 − τ
fdiff

+
1

gdiff

)
dτ +

χdiff

κdiff

]
. (2.20)

We describe an iterative method for �nding the unknown constants f ext, Hext
0 , fdiff ,

and gdiff in Appendix A.

2.2 Analytic Limits for a Vertically Isothermal Disk

If self-heating from accretion is negligible (H0 � Hext
0 ), or if the disk is optically

thin (τ0 � 1), then the disk is vertically isothermal, B/Bm → 1, and Equation (2.20)

can be integrated analytically. In the former case, there is still a temperature rise in

the surface layers, but since most of the internal energy is stored in the interior of the

disk, the error is minimal. The cooling time (eq. [2.20]) simpli�es to

tcool =
1

16

c2
m

γ − 1

1

σT 4
m

(
χdiffΣ2

8fdiff
+

Σ

2gdiff
+

1

κdiff

)
. (2.21)

The �rst term in parentheses dominates in the optically thick (τ0 � 1) limit, while the

last term dominates in the optically thin (τ0 � 1) limit. The middle term becomes

important for intermediate optical depths (τ0 ∼ 1), and represents the e�ects of the

temperature perturbation at the disk surface.

In the optically thick (τ0 � 1) limit, the Eddington factor fdiff → 1/3, and

tcool =
3

128

c2
m

γ − 1

1

σT 4
m

χdiffΣ2 . (2.22)

In the optically thin (τ0 � 1) limit, the perturbation cooling time becomes con-
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stant with respect to Σ

tcool =
1

16

c2
m

γ − 1

1

σT 4
m

1

κdiff
. (2.23)

For a given mid-plane temperature, the optically thin limit provides the shortest

possible perturbation cooling time.

2.3 Self-Heated Limit

In the limit where self-heating becomes dominant (H0 � Hext
0 ), the ratio

B

Bm

→ 1−
(
τ

τ0

)2

, (2.24)

where we have also made the assumption that the disk is optically thick (τ0 � 1),

consistent with a locally high accretion rate. The optically thick, perturbation cooling

time is

tcool =
1

16

c2
m

γ − 1

1

σT 4
m

1

χdiff

τ0

fdiff

ˆ τ0

0

(
1− τ 2

τ 2
0

)−3/4(
1− τ

τ0

)
dτ

=
3

64

c2
m

γ − 1

1

σT 4
m

χdiffΣ2

[
2F1

(
1

2
,
3

4
;
3

2
; 1

)
− 2

]
≈ 0.029

c2
m

γ − 1

1

σT 4
m

χdiffΣ2 , (2.25)

where 2F1 is the hypergeometric function, and fdiff → 1/3. Note that while the

explicit Σ-dependence is the same as for the vertically isothermal case, the mid-

plane temperature Tm will also increase with Σ, due to an associated increase in the

accretion luminosity.

We can characterize the dependence of the mid-plane temperature on the surface

density explicitly in the case of quasi-steady-state α-disks (Shakura & Sunyaev, 1973).
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When the viscous shear-stress (i.e., accretion) is the dominant source of heating,

H0 =
9

32π
αc2

mΩΣ , (2.26)

where 0 < α < 1 is the parameter introduced by Shakura & Sunyaev (1973) to

account for turbulent viscosity (i.e., the e�ective kinematic viscosity is ν = αcmh,

where h is the disk scale height). In the optically thick, self-heated limit, the Planck

function (eq. [2.18]) at the mid-plane simpli�es to

Bm =
3

2
H0τ0 , (2.27)

which together with Equation (2.26) gives

σT 4
m =

27

128
αc2

mΩχdiffΣ2 . (2.28)

Substituting this result into the cooling time (eq. [2.25]) gives the behavior for large

Σ:

tcool ≈
0.138

α(γ − 1)

1

Ω
. (2.29)

We see that the cooling time is in fact constant with Σ for large surface densities. In

addition, the cooling time becomes opacity-independent in this limit, and thus the

temperature of the disk becomes mostly irrelevant (excluding secondary e�ects on γ

and possibly α).

Recall that a gravitationally unstable (Q . 1) disk will fragment only if Ωtcool < ξ,

where ξ is a constant of order unity. Using Equation (2.29) for tcool, we �nd that a

high-Σ disk can fragment only if

α >
0.138

ξ(γ − 1)
. (2.30)
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Using ξ = 1 and γ = 1.43, we �nd a typical lower limit of α > 0.32 for fragmentation.

Note that this is similar in magnitude to the Gammie (2001) result, but with a

di�erent numerical constant owing to the di�erence between total and perturbation

cooling times. Since typical values for α are 0.01�0.1 for massive disks (Zhu et al.,

2009), we conclude that extremely large surface densities are, in general, detrimental

to disk fragmentation. An important caveat, however, is that if the surface density

is increased to such an extent that the mid-plane temperature rises above the dust

sublimation threshold, then the cooling time will begin to decrease as the interior of

the disk becomes optically thin and isothermal.
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Chapter 3

Monte Carlo Comparison

In order to test the validity of our analytic perturbation cooling time calcula-

tion, we compare our results to those from a 1-D, plane-parallel numerical code. The

numerical code uses a Monte Carlo radiative equilibrium calculation for the surface

layers (τ . 10) and di�usion approximation for the interior (τ & 10), and was devel-

oped to closely match the geometry and energy sources of our analytic approximation.

As in our analytic approximation, the atmosphere is externally illuminated from both

sides, and self-heating from accretion is included (using eq. [2.26]). In the following

comparisons, we consistently use a 0.5 M�, 2 R�, 4000 K star with a power-law scale

height h ∝ r5/4 for the disk, with a Shakura-Sunyaev α parameter of 0.1. We assume

a mean molecular weight µ = 2.33 and an adiabatic gas constant of γ = 1.43. For full

details on the radiative equilibrium temperature calculation used in the Monte Carlo

surface layers, see Bjorkman & Wood (2001). In the cases were the vertical optical

depth is su�ciently small (τ . 10), the entire atmosphere is computed using Monte

Carlo.

To �nd the perturbation cooling time numerically, we use Equation (2.3), where

∆H0 and ∆T are found by solving for the temperature structure twice: �rst as

a background solution, and then with a small source of internal energy added at
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the mid-plane. We then subtract to �nd the di�erences. Note that this numerical

method avoids the major simplifying assumptions of our analytic approximation. In

particular, our analytic approximation assumes that both opacities and Eddington

factors are vertically uniform, while the Monte Carlo simulation does not. We also

assumed that we could reproduce the relevant radiative physics using a quasi-gray

assumption with only two relevant frequencies (external and di�use), while the Monte

Carlo simulation calculates the radiation �eld with the full frequency dependence and

anisotropic scattering by the dust.

3.1 Gray Opacity

We begin our comparison using a purely absorptive, gray opacity (with χ = κ =

1 cm2/g). This comparison allows us to isolate the e�ects of assuming vertically

uniform Eddington factors. The usage of a purely absorptive atmosphere also has

the advantage of simplifying the solution of the external radiation �eld considerably.

In this limit f ext → µ2
?, H

ext
0 → H?/2, and β → 1/µ? (for details on solving for

the boundary conditions f ext and Hext
0 see Appendix A). Furthermore, since gdiff

is by de�nition depth-independent, the only potential source of error is the depth-

dependence of the di�use Eddington factor fdiff.

The mid-plane temperatures at 1, 10, and 100 AU are shown as a function of sur-

face density in Figure 3-1. Note that we end the comparison at the dust sublimation

temperature, since neither of our approaches were developed to account for a sudden

vertical transition from dust to gas as the primary opacity source.

In general, the analytic approximation is in good agreement with the Monte Carlo

(for the gray case). However, there is some slight deviation for surface densities

near unity, corresponding to optical depths near unity. This is not surprising, since

this is where the e�ect of an incorrect di�use Eddington factor fdiff would be most
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Figure 3-1: Comparison of the mid-plane temperature as a function of surface density
for both our analytic approximation (lines) and full numerical calculation (points),
using a purely absorptive, gray opacity with χ = κ = 1 cm2/g. Comparisons are
made at 1 AU (solid lines and �lled points), 10 AU (dashed lines and crosses), and
100 AU (dotted lines and pluses) from a 0.5 M�, 2.0 R�, 4000 K star.
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pronounced. At these optical depths, the external radiation will have been completely

absorbed in the surface layers, yet the disk is not yet optically thick to its own

di�use radiation. For smaller optical depths, the disk is dominated by the well-

determined external radiation �eld, while at higher optical depths, the disk is well

into the di�usion limit.

In Figure 3-2, we plot vertical slices of the disk temperature at 100 AU for surface

densities of 10−4, 100, and 104 g/cm2, highlighting the optically thin, intermediate,

and self-heated limits, respectively. Since the external radiation �eld sets the tem-

perature rise at the disk surface�and is well determined for the purely absorptive

limit�the Monte Carlo and analytic calculations are, not surprisingly, in good agree-

ment.

In Figure 3-3, we plot a comparison of the perturbation cooling time as calculated

using our analytic approximation and Monte Carlo solution. With the exception of

some disagreement for surface densities (and optical depths) near unity, both tech-

niques for calculating the perturbation cooling time are in good agreement. The

deviations near unity are caused by the somewhat inaccurate calculation of the mid-

plane temperature as a result of neglecting the vertical dependence of fdiff .

3.2 Non-Gray Opacity

We now extend our comparison to include the e�ects of a more realistic opacity

model. Using the dust opacity model of Wood et al. (2002), we plot comparisons of

mid-plane temperature in Figure 3-4, vertical temperature slices in Figure 3-5, and

perturbation cooling time in Figure 3-6. As in the gray case, the vertical dependence

of fdiff leads to inaccurate mid-plane temperatures for optical depths of order unity.

To some extent, this e�ect is exacerbated by the vertical temperature dependence of

the dust opacity (fortunately, the disk is mostly isothermal at these optical depths).

18



Figure 3-2: Comparison of the vertical temperature structure for both our analytic
approximation (lines) and full numerical calculation (points), using a purely absorp-
tive, gray opacity. Comparisons are made for surface densities of 10−3 g/cm2 (solid
lines and triangles), 100 g/cm2 (dashed lines and squares), and 103 g/cm2 (dotted lines
and diamonds), highlighting the optically thin, intermediate, and self-heated limits,
respectively. All three comparisons are made at 100 AU from a 0.5 M�, 2.0 R�,
4000 K star.
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Figure 3-3: Comparison of the perturbation cooling time (normalized to the Keplerian
orbital angular frequency Ω) as a function of surface density for both our analytic ap-
proximation (lines) and full numerical calculation (points), using a purely absorptive,
gray opacity. Comparisons are made at 1 AU (solid lines and �lled points), 10 AU
(dashed lines and crosses), and 100 AU (dotted lines and pluses) from a 0.5 M�,
2.0 R�, 4000 K star.
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Furthermore, as shown in Figure 3-5, the detailed shape of the vertical temperature

structure of the disk depends on the solution to the external radiation �eld. By

matching the boundary conditions for f ext at the mid-plane, we sacri�ce the accuracy

of the temperature in the surface layers. This was done to improve our calculation

of the mid-plane temperature, which plays a much larger role in determining tcool

than the surface e�ects do. Nonetheless, our analytic mid-plane temperatures can

di�er by up to 20% from the Monte Carlo result. Despite these e�ects, our analytic

approximation to the perturbation cooling time remains in good agreement with the

Monte Carlo (Figure 3-6), with the largest disagreement of 50% around optical depth

unity, which arises primarily from inaccuracies in the mid-plane temperature.
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Figure 3-4: Same as Figure 3-1, but with the dust opacity of Wood et al. (2002).
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Figure 3-5: Same as Figure 3-2, but with the dust opacity of Wood et al. (2002).
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Figure 3-6: Same as Figure 3-3, but with the dust opacity of Wood et al. (2002).
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Chapter 4

Fragment and Disk Masses

In this chapter, we consider the planet Fomalhaut b (Kalas et al., 2008), the

triple-planet system HR 8799 (Marois et al., 2008), and the potential protoplanet

orbiting HL Tau (Greaves et al., 2008). Each of these systems possesses at least one

planet with orbital characteristics favored by the disk fragmentation mechanism. By

determining the range of surface densities required to form a giant planet with the

same semi-major axis as these observed planets, we can infer the range of disk masses

needed for the fragmentation mechanism to have operated in these systems.

4.1 Fragment Masses

When determining if disk fragmentation is a viable mechanism for forming giant

planets, an important point to consider is the issue of producing the proper planetary

mass of a few MJupiter. While a full treatment of this problem is beyond the scope of

this work, we provide a toy model to argue that this is likely to be the case.

If Q . 1 at some radius r, the disk becomes gravitationally unstable. Supposing

m spiral arms form, each arm has local surface density

Σarm =
π cosϕ

m

r

R
Σ , (4.1)
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where Σ is the original surface density of the previously axisymmetric disk, R is the

current width of the spiral arms, and ϕ is the winding angle of a logarithmic spiral.

For simplicity, we assume that most of the disk mass is con�ned to the spiral arms,

while the space between the arms is e�ectively empty.

If Ωtcool & 1, then the spiral arms are pressure supported and are stable against

fragmentation. However, if Ωtcool . 1, then the arms are instead supported by cen-

trifugal forces. As R continues to decrease, they will fragment radially once the

centrifugal support is lost. Balancing self-gravity against the centrifugal support,

Ω2R = πGΣarm, fragmentation occurs when

R < Rf = r2

√
π2 cosϕ

m

Σ

M?

, (4.2)

where M? is the stellar mass. The fragment mass is πR2
fΣarm, so assuming a few

moderately wound spiral arms π2 cosϕ/m ∼ 1, we �nd a characteristic fragment

mass

Mf ∼ 1MJupiter

(
Σ

10 g cm−2

)3/2(
M?

M�

)−1/2 ( r

100 AU

)3

, (4.3)

which is consistent with our requirement to produce Jupiter-mass planets.

4.2 Disk Mass Limits

The condition that both the Toomre Q and the cooling time be su�ciently small

can be used to place limits on what disk surface densities lead to fragmentation. To be

gravitationally unstable, the Toomre Q condition requires that the surface density be

larger than a minimum, Σmin, while the cooling condition imposes a maximum surface

density, Σmax. Therefore, local disk fragmentation is only possible if Σmin < Σ < Σmax.

It of course follows that for fragmentation to be possible at all, Σmin must be less than

Σmax. This limits the range of radii were fragmentation is even a possibility.
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Figure 4-1: Surface density limits for disk fragmentation. The solid line denotes Σmax,
which is the maximum surface density for the cooling time constraint. The dashed
line denotes the minimum surface density for fragmentation, Σmin, which is the locus
Toomre Q = 1. Disk fragmentation is only allowed in the region Σmax > Σmin, which
is shaded gray. The locations of known planets are plotted as vertical dotted lines.
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Table 4.1: Parameters Used for Each System

Object M? R? T? rplanet(s)

(M�) (R�) (K) (AU)
Fomalhaut b 2.0 1.8 8500 >101.5a

HR 8799 b, c, d 1.5 1.8 8200 68, 38, 24b

HL Tau b 0.3 0.6 3700 65c

aChiang et al. (2009)
bMarois et al. (2008)
cGreaves et al. (2008)

In Figure 4-1, we plot Σmin and Σmax for the systems Fomalhaut, HR 8799, and

HL Tau, using the parameters listed in Table 4.1. In all cases we used an accretion

rate of 10−6M�/yr (which sets the net Eddington �ux H0), a mean molecular weight

for the disk of µ = 2.33, and an adiabatic gas constant of γ = 1.43. The temperature

is determined from Equation (2.18), using a �ared disk model with a power law scale

height h ∝ r5/4, which determines the angle of incidence of the external radiation

(Kenyon & Hartmann, 1987)

µ? =
dh/dr − h/r√

[1 + (h/r)2][1 + (dh/dr)2]
. (4.4)

We use the dust opacity of Cotera et al. (2001), which assumes icy dust grains.

We note that the stellar parameters in Table 4.1 are not necessarily appropriate if

planet formation occurs during the Class 0/I phase when the star is signi�cantly more

luminous. However, our results are relatively insensitive to this e�ect, since Tm is only

weakly dependent on the stellar luminosity.

Each system presented here has a planet that might have formed via disk fragmen-

tation, assuming that the local surface density had a value between Σmin and Σmax

for at least a few orbital periods. By assuming a power law for the surface density,

Σ ∝ r−p, we can calculate a range of disk masses (interior to rplanet) that satis�es this

28



Table 4.2: Range of Disk Masses that Fragment

Object Σ Md (p = 0.5) Md (p = 1.0) Md (p = 1.5) Mf

(g cm−2) (M�) (M�) (M�) (MJupiter)
Fomalhaut b 35�94 0.17�0.45 0.26�0.68 0.51�1.36 5�21
HR 8799 b 62�89 0.14�0.19 0.20�0.29 0.41�0.58 4�7
HL Tau b 21�43 0.04�0.09 0.06�0.13 0.13�0.26 2�4

condition.

A survey of 24 circumstellar disks by Andrews &Wiliams (2007) found p ≈ 0.0�1.0

with an average of p ≈ 0.5, while the hydrodynamical simulations of Vorobyov & Basu

(2009) found p ≈ 1.0�2.0 with an average around p ≈ 1.5. Disk mass limits Md for

p = 0.5, 1.0 and 1.5, along with the more fundamental surface density limits are given

in Table 4.2. We also provide the characteristic fragment mass (approximate planet

mass) Mf from Equation (4.3) that we would expect from the disk fragmentation

mechanism. Also note that, in order to be conservative, we are using the smallest

radius found by Chiang et al. (2009) for Fomalhaut b. Using one of their better �ts

(e.g. 115 AU) will decrease our lower disk mass limit by a few percent, increase our

upper disk mass limit by ≈ 30% (which would make fragmentation slightly easier),

and increase the characteristic fragment mass by ≈ 50%.

4.3 Discussion

While the ranges in Table 4.2 only span a factor of a few, this is not by itself a

signi�cant limitation. Even if the local surface density is above the upper instability

limit, fragmentation may still occur since the surface density must eventually drop

through the unstable regime as the disk evolves and dissipates. The caveat is that

the surface density needs to evolve on a timescale longer than an orbital period so

that there can be su�cient time to fragment.

Our minimum disk masses for Fomalhaut b, HR 8799 b, and HL Tau b are about
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an order of magnitude larger than those inferred from observations (Andrews & Wil-

iams, 2007). Note, however, that this is a problem for all planet formation models in

general. Even core accretion models require an enhanced surface density (although

to a somewhat lesser extent) (Pollack et al., 1996; Inaba et al., 2003). One possible

mechanism for increasing the surface density is mass loading from an infalling enve-

lope (Vorobyov & Basu, 2006). Conversely, current estimates of disk masses may be

too low because they depend on: 1) the extrapolation of surface densities in the out-

ermost regions of the disk to the inner disk, and 2) the rather uncertain dust opacity.

For example, larger dust grains would require larger disk masses to �t the observed

spectral energy distributions (Andrews & Wiliams, 2007).

As further evidence for underestimated disk masses, numerical hydrodynamical

simulations by Vorobyov (2009) found disk masses much higher than those of Andrews

& Wiliams (2007). In particular, stars like Fomalhaut and HR 8799 can support disks

as large as 0.5M�, while HL Tau could have a disk as massive as 0.1M�, all of which

are within our limits for disk fragmentation. We caution, however, that our choice

of opacity model can have a major e�ect on our results. For example, decreasing the

dust opacity raises the temperature and decreases the cooling time in the outer disk,

resulting in disk fragmentation at smaller radii. On the other hand, increasing the

opacity would have the opposite e�ect.

Regardless of the above considerations, HR 8799 c and d are too close to their par-

ent star to have formed in situ via fragmentation under the conditions modeled here.

Appealing to chronically overestimated dust opacity can only get us so far. Dropping

the opacity by an order of magnitude brings HR 8799 c into the fragmentation zone,

but still leaves HR 8799 d out. Likewise, twiddling other parameters can also move

the fragmentation radius inward, but reaching the required 24 AU with reasonable

parameters does not seem possible. We therefore conclude that HR 8799 c and d

likely did not form in situ as the result of disk fragmentation (of course, they could
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have formed at larger radii were the disk is more likely to fragment and migrated

inward).

For those planets that could form by disk fragmentation, we �nd characteristic

fragment masses (approximate planet masses) of a few MJupiter for the lower end of

unstable disk surface density. Our estimates are mostly consistent with expectations,

although Chiang et al. (2009) found Fomalhaut b to have an upper mass limit of

3 MJupiter, which is 60% lower than our lowest estimate of 5 MJupiter. Nonetheless,

considering the crudeness of Equation (4.3), this discrepancy does not rule out the

possibility that Fomalhaut b formed as a result of disk fragmentation.
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Chapter 5

Enhancements to Cooling

5.1 Vertically Displaced Perturbation

We now consider the case where the temperature perturbation is no longer at

the disk mid-plane. By moving the perturbation closer to the surface, we provide a

shorter path for radiation to escape. This will consequently decrease the cooling time.

If this situation arises due to an inclined orbit, then the height of the perturbation

is the �cooling-averaged� height, which would be heavily weighted to the maximum

height where the cooling is most e�cient.

Since the details of the perturbation have no e�ect on the background solution,

the e�ects of moving the perturbation away form the mid-plane must be fully con-

tained within the perturbed Planck function (eq. [2.19]). We start by re-writing

Equation (2.19) in the more general form

∆B =
1

fdiff

ˆ τ0

τ

∆H dτ +
∆H+

gdiff
+
χdiff

κdiff

d∆H

dτ
, (5.1)
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where

∆H =


−∆H− (τ < τ ′)

∆H+ (τ > τ ′)

with ∆H+ = ∆H(τ0), ∆H− = ∆H(−τ0), and τ ′ the optical depth coordinate of the

perturbation. The cooling time (eq. [2.5]) takes the form

tcool =
1

16

c2
m

γ − 1

1

σT 4
m

1

χ

ˆ τ0

−τ0

(
B

Bm

)−3/4
∆B

∆H+ + ∆H−
dτ . (5.2)

Note that for nonzero τ ′, ∆H+ 6= ∆H−. To �nd the relationship between ∆H+and

∆H−, we use the fact that ∆B(τ0) = ∆H+/g
diff and correspondingly, ∆B(−τ0) =

∆H−/g
diff (gdiff is the same on the top and bottom surfaces, since it is unperturbed).

Thus

∆H− = ∆H+
fdiff + gdiff(τ0 − τ ′)
fdiff + gdiff(τ0 + τ ′)

, (5.3)

and

∆B = (∆H+ + ∆H−)
χdiff

κdiff
δ(τ − τ ′) +


∆H−

(
τ0+τ
fdiff + 1

gdiff

)
(τ < τ ′)

∆H+

(
τ0−τ
fdiff + 1

gdiff

)
(τ > τ ′) .

(5.4)

In the limit of a vertically isothermal disk (B/Bm → 1), the cooling time (eq. [5.2])

can be integrated analytically, yielding

tcool =
1

16

c2
m

γ − 1

1

σT 4
m

[
χdiffΣ2

8fdiff

(
1− τ ′

τ0

)
+

Σ

2gdiff
+

1

κdiff

]
. (5.5)

We �nd that the e�ect of moving the perturbation away from the disk mid-plane

is to decrease the optically thick contribution to the cooling time, while the optically

thin and surface terms remain una�ected. One somewhat surprising consequence of

this result is that a perturbation placed on the surface (τ ′ → ±τ0) does not cool
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in�nitely quickly, or even at the optically thin limit (unless of course the disk is

optically thin). Physically, a surface perturbation still heats the interior of the disk,

but the bulk of the extra internal energy is stored much closer to the surface (in

optical depth space) than in the case where the perturbation was on the mid-plane.

Thus, it is the surface term that dominates for moderate to large optical depths.

The results of moving the perturbation to 0.5, 1, and 2 scale heights is shown

in Figure 5-1. The limiting case of moving the perturbation all the way to the disk

surface (τ ′ → ±τ0) is also shown. We use the same stellar and disk parameters

as in Section 3. Note that while a surface perturbation has the e�ect of reducing

the perturbation cooling time below the critical fragmentation value of Ωtcool = 1

everywhere (and for any α & 10−4), the e�ects at one scale height are more subdued.

Furthermore, the majority of the disk mass is�by de�nition�within a scale height

of the mid-plane, reducing the likelihood that a disk would begin its fragmentation

outside of that range. Therefore, a vertically displaced perturbation will probably

only reduce the perturbation cooling time by a factor of a few at the most.

5.2 Dust Settling

Another e�ect that can decrease the cooling time is dust settling. For temperatures

below dust sublimation (∼ 1500 K), dust is by far the primary opacity source. On

the other hand, since the gas-to-dust ratio is ∼ 100, most of the disk's mass (and

thus internal energy) is stored in the gas. Consequently, if the dust has a smaller

scale height than the gas (i.e., the dust has settled), then more of the internal energy

is stored in the optically thin surface layers of the disk. In e�ect this changes the

mapping between the spatial coordinates and the optical depth coordinates of the

internal energy distribution.

To account for the e�ects of dust settling, we divide the disk into three layers:
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Figure 5-1: The cooling time as a function of surface density for a perturbation located
at the mid-plane (solid black line), at half of a scale height (dashed line), at one scale
height (dot-dashed line), at two scale heights (dotted line), and for the extreme case
of a surface perturbation (gray solid line). The critical cooling time for fragmentation
Ωtcool = 1 is indicated by the bold, horizontal line. Comparisons are made at 10 AU
from a 0.5 M�, 2.0 R�, 4000 K star, using the dust opacity of Wood et al. (2002) and
α = 0.1.
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Figure 5-2: Sketch of our three-layer disk model, including the e�ects of external
illumination from both the star and 10 K background, internal energy generation,
and dust settling.

a layer of dust and gas centered about the disk mid-plane (which we call the dust

layer), and two layers of optically thin gas surrounding it on either side (which we

call gas layers). A sketch of our model is shown in Figure 5-2. For simplicity, we

assume that the disk is in hydrostatic equilibrium, and that the gas has a Gaussian

density distribution. Near the mid-plane (i.e., within the dust layer), the gas density

will be slowly-varying, and thus we will assume it is constant. Furthermore, we will

assume that the dust density is also constant within the dust layer, and that all of

the dust has settled into this layer. The gas layer has surface density Σgas and optical

depth τg = χgasΣgas. The dust layer has surface density Σdust = Σdust
g + Σdust

d and

total optical depth 2τ0 = χdiffΣ− 2χgasΣgas, where Σdust
g is the surface density of the

gas within the dust layer, and Σdust
d is the surface density of the dust.

Given a gas-to-dust ratio % = ρg/ρd and dust settling hd/hg, the total surface
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density Σ is divided according to

Σdust
d

Σ
=

1

%+ 1
, (5.6)

Σdust
g

Σ
=

%

%+ 1

hd
hg

, (5.7)

Σgas

Σ
=

%

%+ 1

(
1− hd

hg

)
. (5.8)

In addition, the internal energy generation is also split among the layers. Within the

dust layer, the fractional internal energy generation

H0

Htot

=
Σdust

Σ

=
%

%+ 1

(
1

%
+
hd
hg

)
, (5.9)

while in the gas layer

Hg

Htot

=
Σgas

Σ

=
%

%+ 1

(
1− hd

hg

)
, (5.10)

where

Htot =
9

32π
αc2

mΩΣ , (5.11)

is the total energy generated by viscous heating (as in eq. [2.26]).

5.2.1 Dust Layer

In addition to just stellar illumination, the external radiation �eld (i.e., radiation

impingent on the dust layer) now needs to include the e�ects of radiation from the

gas layers. In addition, we use this opportunity to add in the e�ects of a background

radiation �eld (i.e., a 10 K black body corresponding to the interior of a giant molec-
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ular cloud). This background radiation �eld plays the role of setting a minimum

temperature within the disk when both stellar illumination and viscous energy gener-

ation are weak. Studying the e�ects of a background radiation �eld is also interesting,

because it allows for the potential inclusion of more exotic e�ects (e.g., a nearby OB

association).

To account for these new sources of radiation, we split the external radiation into

three components: star which corresponds to stellar irradiation, surface (or surf)

which corresponds to radiation from the gas layers, and background (or bg) which

corresponds to the 10 K background. The solutions to these radiation �elds are

identical to the external �eld found in Equations (2.14) and (2.15), with the exception

that κext → κstar, κsurf , or κbg (referring to the opacity of each respective radiation

�eld within the dust layer). In addition, each new �eld has unique solutions to the

boundary conditions f star, f surf , fbg, Hstar
0 , Hsurf

0 , and Hbg
0 . Thus,

Hstar = Hstar
0

sinh βstarτ

sinh βstarτ0

, (5.12)

Hsurf = Hsurf
0

sinh βsurfτ

sinh βsurfτ0

, (5.13)

Hbg = Hbg
0

sinh βbgτ

sinh βbgτ0

, (5.14)

and

J star = −β
starχdiff

κstar
Hstar

0

cosh βstarτ

sinh βstarτ0

, (5.15)

J surf = −β
surfχdiff

κsurf
Hsurf

0

cosh βsurfτ

sinh βsurfτ0

, (5.16)

Jbg = −β
bgχdiff

κbg
Hbg

0

cosh βbgτ

sinh βbgτ0

, (5.17)
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where

βstar =
χstar

χdiff

√
κstar

χstar

1

f star
, (5.18)

βsurf =
χsurf

χdiff

√
κsurf

χsurf

1

f surf
, (5.19)

βbg =
χbg

χdiff

√
κbg

χbg

1

fbg
. (5.20)

The solutions to the expanded set of boundary conditions is given in Appendix A.

The di�use radiation �eld is also similar to the single layer model, with the excep-

tion that it now includes three terms instead of one for the external radiation. The

di�use mean intensity (eq. [2.17]) becomes

Jdiff = H0

(
τ 2

0 − τ 2

2fdiffτ0

+
1

gdiff

)
+ ∆H0

(
τ0 − |τ |
fdiff

+
1

gdiff

)
−Hstar

0

(
cosh βstarτ0 − cosh βstarτ

βstarfdiff sinh βstarτ0

+
1

gdiff

)
−Hsurf

0

(
cosh βsurfτ0 − cosh βsurfτ

βsurffdiff sinh βsurfτ0

+
1

gdiff

)
−Hbg

0

(
cosh βbgτ0 − cosh βbgτ

βbgfdiff sinh βbgτ0

+
1

gdiff

)
, (5.21)

and the Planck function in the dust layer becomes

Bdust = Jdiff +
χdiff

κdiff

H0

τ0

+
κstar

κdiff
J star +

κsurf

κdiff
J surf +

κbg

κdiff
Jbg + 2

χdiff

κdiff
∆H0δ(τ) . (5.22)

The perturbed Planck function in the dust layer remains unchanged from Equa-

tion (2.19) (or eq. [5.4] for a vertically displaced perturbation).
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5.2.2 Gas Layer

Since the gas layer is optically thin, the mean intensity is set by the impingent

radiation from the star, the 10 K background, and the dust layer, plus local internal

energy generation (we assume that the contribution from reprocessed radiation is

negligible). For simplicity, we assume that the gas layer has gray opacity. It follows

that the mean intensity for the gas layer

Jgas =
H?

2µ?

[
1 + exp

(
−2τ0 + τg

µ?

)]
+
σT 4

bg

2π
[1 + E2(2τ0 + τg)]

+
H0 −Hstar

0 −Hsurf
0 −Hbg

0

gdiff
+

∆H0

gdiff
, (5.23)

where E2 is an exponential integral and Tbg = 10 K is the temperature of the back-

ground radiation �eld. Assuming radiative equilibrium, the Planck function in the

gas layer

Bgas = Jgas +
χgas

κgas

Hg

τg
. (5.24)

Note that the perturbed Planck function

∆Bgas =
∆H0

gdiff
= ∆Bdust(τ0) , (5.25)

is set by ∆Bdust at the top of the dust layer, regardless of whether the perturbation

is located at the disk mid-plane, or is displaced as in � 5.1.

5.2.3 Cooling Time With Dust Settling

There are three contributions to the excess internal energy, and thus the cooling

time: 1) gas in the dust layer, 2) dust in the dust layer, and 3) gas in the two gas

layers. In addition, each of these contributions is weighted by the speci�c heat of

40



their constituents. The cooling time (eq. [2.3]) becomes

tcool =
1

4π(∆H+ + ∆H−)

kB
mH

[
1

µg(γg − 1)

ˆ z0

−z0
∆T dustρdust

g dz

+
1

µd(γd − 1)

ˆ z0

−z0
∆T dustρdust

d dz

+
1

µg(γg − 1)

ˆ ∞
z0

∆T gasρgas
g dz

]
, (5.26)

where µg, γg, and ρg are the mean molecular weight, adiabatic gas constant, and

density for the gaseous component of the disk. The same quantities with a d subscript

correspond to the dust component of the disk. Similarly, the dust and gas superscripts

refer to the corresponding layer. The z-coordinate of the top/bottom of the dust layer

is ±z0.

Since the dust component is the dominant opacity source, we make the simpli�-

cation that Σχdiff = Σdχd, where χd is the opacity of the dust component. Thus, in

the dust layer, dτ = χdρddz = (Σ/Σd)χ
diffρddz. Since ρg/ρd = Σghd/Σdhg, and using

Equation (2.4) to express ∆T in terms of ∆B,

tcool =
1

16

c2
m

γ − 1

1

σT 4
m

[
1

χdiff

(
Σg

Σ

hd
hg

+
Σd

Σ
φd

) ˆ τ0

−τ0

(
Bdust

Bm

)−3/4
∆Bdust

∆H+ + ∆H−
dτ

+
Σgas

gdiff

(
Bgas

Bm

)−3/4
]
, (5.27)

where we have allowed for a vertically displaced perturbation (recall H+ = H− = H0

if the perturbation is at the mid-plane). In addition, we have assumed that the gas

component dominates the internal energy of the disk, and thus γg ≈ γ and µg ≈ µ.

The factor

φd =
µ(γ − 1)

µd(γd − 1)
, (5.28)

is the relative contribution of the dust to the speci�c heat of the disk. Note that

while the contribution of the dust to the internal energy is in general trivial, in the
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limit of extreme dust settling (hd/hg → 0) this term can become dominant.

If we assume that the dust grains follow the Debye model, then

1

γd − 1
=


12π4

5

(
Tm

TD

)3

(Tm � TD)

3 (Tm � TD) ,

(5.29)

where TD ≈ 700 K (for interstellar dust grains) is the Debye temperature (Andriesse,

1977). For a gas-to-dust ratio % = 100, and assuming µ(γ−1) ∼ 1 and µd ∼ 30; φd ∼

10(Tm/TD)3 in the low-temperature limit, while φd ∼ 0.1 in the high-temperature

limit.

We now evaluate Equation 5.27 for di�erent degrees of dust settling. We use

χgas = κgas = 10−4 to ensure that the gas layer remains optically thin over the range

of surface densities considered. While this is probably an underestimate, we note

that the perturbation cooling time is only weakly dependent on the value of the gas

opacity, so long as the gas layer has a much lower optical depth than the dust layer.

In addition, we use the scale height of the dust layer to determine µ?, noting that this

leads to an increasingly shallow angle of incidence as dust settling progresses. We

assume that the disk �aring continues to follow hd ∝ r5/4, independent of the degree

of dust settling

The e�ects of dust settling are illustrated in Figure 5-3. Shown are the pertur-

bation cooling times when hd/hg = 1 (unsettled), 0.5, 0.1, 0.01, and 0 (completely

settled). Note that when hd/hg . 0.1, the disk is below the critical cooling time for

a greatly increased range of surface densities (assuming ξα ≈ 0.1).

As dust settling proceeds below hd/hg ≈ 0.1, the perturbation cooling time ac-

tually begins to increase for the largest surface densities. This behavior is due to

the increasing amount of excess internal energy that is stored within the gas layers.

Since the optically thin gas layer is isothermal, the perturbation cooling time is longer
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Figure 5-3: The perturbation cooling time as a function of surface density for a disk
with no dust settling hd/hg = 1 (solid black line), for hd/hg = 0.5 (dashed line), for
hd/hg = 0.1 (dot-dashed line), for hd/hg = 0.01 (dotted line), and for the extreme case
hd/hg = 0 (gray solid line). The critical cooling time for fragmentation Ωtcool = 1 is
indicated by the bold, horizontal line. Comparisons are made at 10 AU from a 0.5 M�,
2.0 R�, 4000 K star, using the dust opacity of Wood et al. (2002) and α = 0.1.
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than it would be if there were a temperature gradient (as there is in the dust layer).

Note that if Σ is allowed to increase to high enough values, the disk will eventually

return to the opacity-independent, self-heated limit (eq. [2.29]), although since this

only occurs after dust sublimation begins, we do not consider this limit further. A

comparison of the e�ects of dust settling on maximum surface density for fragmenta-

tion Σmax (the locus Ωtcool = 1) at 1, 10, and 100 AU is shown in Figure 5-4. Note

that Σmax is maximized when hd/hg ∼ 0.1, but any signi�cant degree of dust settling

(hd/hg . 0.3) serves to signi�cantly increase Σmax compared to the unsettled case.

Of additional interest is the case where the disk is both settled and harbors a

perturbation o�set from the mid-plane. By changing the mapping between the dust

and gas scale heights, a perturbation located at one gas scale height can simultane-

ously be at many dust scale heights, and thus behave as if it were at the surface.

An example of this case is examined in Figure 5-5, where the perturbation is at one

gas scale height, and hd/hg = 0.5, 0.1, and 0.01. Unsurprisingly, even modest dust

settling is su�cient to keep Ωtcool < 1 for all Σ . 103.
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Figure 5-4: The maximum surface density for fragmentation, Σmax, as a function of
the dust settling hd/hg for a 0.5 M�, 2.0 R�, 4000 K star at 1, 10, and 100 AU (solid,
dashed, and dotted lines, respectively).
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Figure 5-5: The cooling time as a function of surface density for a perturbation
located at one gas scale height and with dust settling. Comparisons are made for
hd/hg = 0.5 (dashed line), for hd/hg = 0.1 (dot-dashed line), and for hd/hg = 0.01
(dotted line). The unmodi�ed perturbation cooling time is given by the black solid
line for comparison. The critical cooling time for fragmentation Ωtcool = 1 is indicated
by the bold, horizontal line. Comparisons are made at 10 AU from a 0.5 M�, 2.0 R�,
4000 K star, using the dust opacity of Wood et al. (2002) and α = 0.1.
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Chapter 6

Consequences of Dust Settling

In this chapter, we use our technique for calculating perturbation cooling times to

explore a range of stellar and disk parameters to determine which systems are the best

candidates to form giant planets via disk fragmentation. We use the three-layer model

described in � 5.2 with viscosity parameter α = 0.1, χgas = κgas = 10−4 cm g−2, and

with the dust opacities of Wood et al. (2002). Since disks are most massive during

the pre-main sequence phase (Vorobyov, 2009), we use the evolutionary tracks of

Siess et al. (2000) to �nd the appropriate luminosity as a function of age for low- to

intermediate-mass stars.

6.1 Instability Limits

In Figures 6-1�6-3, we plot Σmax and Σmin following the approach of � 4.2 for

0.1, 0.2, 0.5, 1, 2, and 5 M� at ages of 0.5, 1, 5, and 10 Myr. Figure 6-1 shows

the case with no dust settling (i.e., hd/hg = 1), Figure 6-2 shows a case with partial

dust settling (hd/hg = 0.5), and Figure 6-3 shows a case with signi�cant dust settling

(hd/hg = 0.1). Since the perturbation cooling time depends on the stellar luminosity,

Σmax is a function of age. However, the e�ect on the minimum fragmentation radius

is only of order 10%, indicating that the stellar age has little e�ect on the instability
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criteria (however the increased disk mass when the system is still young remains

important). In addition, when dust settling is signi�cant, the age-dependence of the

perturbation cooling time vanishes, since the shallow angle of incidence for the stellar

radiation causes it to be completely absorbed within the gas layers. Furthermore, a

dust-settled disk will be well into the self-heated limit at Σmax, further reducing the

e�ect of the stellar illumination.

The most striking consequence of dust settling is the greatly increased range of

disk radii and surface densities where fragmentation is allowed. The maximum surface

density for fragmentation Σmax is enhanced by several orders of magnitude when

the dust has settled to a tenth of the gas scale height (hd/hg = 0.1) compared to

the unsettled case. More importantly, the minimum fragmentation radius moves

approximately an order of magnitude closer to the star. This consequence is further

explored in Figures 6-4�6-6.

We plot rcrit, the minimum radius where fragmentation is allowed, for no dust

settling (hd/hg = 1) in Figure 6-4. Figure 6-5 shows the case with partial dust

settling (hd/hg = 0.5), and Figure 6-6 shows the case with signi�cant dust settling

(hd/hg = 0.1). Clearly, dust settling has a signi�cant e�ect on the location of the

minimum fragmentation radius. Note the slight spread due to the di�ering stellar

luminosities arising as a result of age.

We can �nd Ω at rcrit, Ωcrit, by simultaneously satisfying the conditions Ωcrittcool =

1 and Q = 1 (eq. [1.1]). If we assume that tcool is between the optically thick and

self-heated limits, which have the same scalings (see eqs. [2.22] and [2.25]),

tcool ∝
χdiffΣ2

T 3
m

. (6.1)

48



Figure 6-1: Surface density limits for disk fragmentation with no dust settling for 0.1,
0.2, 0.5, 1, 2, and 5M� pre-main sequence stars. The solid lines denote the maximum
surface density for fragmentation Σmax, while the dashed lines denotes the minimum
surface density for fragmentation, Σmin. Disk fragmentation is only allowed in the
region Σmax > Σmin, which is shaded gray. Light gray lines and shading correspond to
a 0.5 Myr old pre-main sequence star, with increasingly darker gray lines and shading
corresponding to 1, 5, and 10 Myr old pre-main sequence stars.
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Figure 6-2: Same as Figure 6-1, but with hd/hg = 0.5, corresponding to partial dust
settling.
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Figure 6-3: Same as Figure 6-1, but with hd/hg = 0.1, corresponding to signi�cant
dust settling.
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Figure 6-4: The minimum fragmentation radius as a function of protostellar mass and
age, with no dust settling. The dashed line is the locus rfrag ∝M3

? , which corresponds
to the scaling of a Keplerian orbit with mass.
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Figure 6-5: Same as Figure 6-4, but with hd/hg = 0.5, corresponding to partial dust
settling.
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Figure 6-6: Same as Figure 6-4, but with hd/hg = 0.1, corresponding to signi�cant
dust settling.
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Then, from the condition Q = 1, we �nd that Σ2 ∝ Ω2
critTm. Thus,

Ωcrit ∝
(
T 2
m

χdiff

)1/3

. (6.2)

The opacity χdiff is a function of temperature, where χdiff ∝ T for the dust model

of Wood et al. (2002). We see that Ωcrit is a constant that depends only weekly on

mid-plane temperature.

Figures 6-4�6-6 also allow us to explore how rcrit scales with stellar mass. A good

zeroth order approximation is to assume that rcrit ∝M3, corresponding to the scaling

of a constant-period Keplerian orbit with mass (i.e. Ωcrit is a constant independent of

M?). However, we see that this assumption is only true when the perturbation cooling

time becomes independent of the stellar illumination (i.e., for the case of signi�cant

dust settling where the stellar radiation is completely absorbed within the gas layers

and the disk is strongly self-heated). In the cases of zero to partial dust settling, the

stellar illumination is important, and rcrit has a somewhat more shallow slope. While

this e�ect is limited to a ∼ 10% error for low- to intermediate-mass stars, caution

should be used when extrapolating to high-mass stars.

6.2 Range of Fragment Masses

Next, we explore the ranges of fragment mass expected to be produced by the pa-

rameter space covered in Figures 6-1�6-3. Using Equation (4.3), we plot the minimum

fragmentation masses produced by 0.1, 0.2, 0.5, 1, 2, and 5M� stars with ages 0.5, 1,

5, and 10 Myr and with no dust settling (hd/hg = 1) in Figure 6-7. The cases with par-

tial dust settling (hd/hg = 0.5) and signi�cant dust settling (hd/hg = 0.1) are shown

in Figures 6-8 and 6-9, respectively. While the fragment masses shown here are only

order-of-magnitude estimates, they can nonetheless help shed light on whether the

disk fragmentation mechanism favors the formation of giant planets, brown dwarfs, or
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binary stars. The obvious general trend is that lower mass stars produce lower mass

fragments. Also of note is that while dust settling increases the range of radii where

disk fragmentation is viable, it also slightly reduces the minimum fragment mass at

a given radii. This later e�ect is due to the reduced mid-plane temperature caused

by having less viscous energy generation occur within the optically thick dust layer.

Nonetheless, it seems that disk fragmentation can only form giant planets for low- to

intermediate-mass stars, with the more massive stars (i.e., & 5M�) forming brown

dwarfs, and high-mass stars likely forming binaries. Also note that even if a fragment

starts within the giant planet regime, it may proceed to accrete enough additional

material to ultimately become a drown dwarf (Kratter et al., 2010).

Another interesting feature of Figure 6-9, is the sharp increase in fragment mass

that occurs near the minimum fragmentation radius rcrit. However, we point out that

local surface densities of order 104 g cm−2 would be required for a disk to fragment

under these conditions. While not impossible, such a large surface density could only

come about as a result of signi�cant local mass loading in the disk. Nonetheless,

this provides a means by which low-mass stars can form surprisingly massive giant

planets.

6.3 HR 8799 Revisited

Recall that we concluded in � 4.3 that HR 8799 c and d where unable to form at

their current locations via disk fragmentation. However, Figure 6-3 indicates that it

would, in fact, be possible for the disk to fragment at these radii, given signi�cant

dust settling (hd/hg ≈ 0.1). However, we point out that fragmentation under these

conditions would likely produce brown dwarfs rather than giant planets (see Figure 6-

9). Thus, our conclusion remains that HR 8799 c and d likely did not form in situ

through disk fragmentation.
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Figure 6-7: The minimum fragment mass as a function of distance, protostellar mass
(0.1, 0.2, 0.5, 1, 2, and 5 M��shown top to bottom), and protostellar age (0.5, 1,
5, and 10 Myr�shown with lines of increasing dark shades of gray) with no dust
settling.
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Figure 6-8: Same as Figure 6-7, but with hd/hg = 0.5, corresponding to partial dust
settling.
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Figure 6-9: Same as Figure 6-7, but with hd/hg = 0.1, corresponding to signi�cant
dust settling.
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Chapter 7

Summary

The primary topic of this thesis was the calculation of the cooling time for a point-

like temperature perturbation in a circumstellar disk. This cooling time determines

whether a Toomre Q . 1 disk is able to fragment, where the critical perturbation

cooling time is given by Ωtcool . 1.

To this end, we have developed an analytic technique for determining tcool (eq. [2.20]).

In addition, we have provided two useful analytic limits: Equation (2.21) for verti-

cally isothermal disks (i.e., dominated by external illumination) and Equation (2.29)

for self-heated disks (i.e., for signi�cant viscous heating due to large surface density).

We found that when self-heating dominates, the perturbation cooling time becomes

a constant independent of opacity. For cases where ξα & 0.3, a disk would satisfy

the cooling criteria for fragmentation for all surface densities. When ξα . 0.3, the

maximum surface density that satis�es the cooling criteria is set by Equation (2.21).

An interesting consequence of this result occurs when gravitational turbulence is the

primary source of viscosity (i.e. in a disk that is beginning to fragment). In this case,

α→ 1, and the cooling constraint remains satis�ed for all surface densities. In other

words, once a disk begins to fragment, it will keep fragmenting (as long as Q . 1).

To test the validity of our simpli�cations, we compared our analytic result with a
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numerical Monte Carlo code, �nding good agreement. The largest discrepancy occurs

for intermediate optical depths where our assumption of constant Eddington factor

begins to break down. Fortunately, since fragmentation is only likely to occur in a

disk massive enough to be optically thick, this issue is minor.

We used these cooling times, along with the observed stellar parameters of Fomal-

haut, HR 8799, and HL Tau, to test the viability of the disk fragmentation mechanism.

We found that in each of these systems, at least one planet could have formed in situ

as the result of fragmentation, assuming the disk mass interior to those planets fell

within a particular range as indicated in Table 4.2.

While our initial cooling time calculations would appear to indicate that there

is a maximum surface density above which fragmentation cannot occur, there are

other e�ects that can decrease the cooling time. We considered two of these e�ects:

1) perturbations displaced from the disk mid-plane, and 2) dust settling toward the

mid-plane. An expression for the perturbation cooling time including both of these

e�ects was given in Equation (5.27). To account for these e�ects, along with the

addition of uniform background illumination (i.e., from a surrounding 10 K cloud

core), we modi�ed our original one-layer model to include three layers: a central gas

and settled dust layer surrounded on both sides by an optically thin, gray, pure gas

layer (potentially of negligible size when there is no dust settling).

We showed that the e�ect of a vertically displaced perturbation tends to be limited

to a factor of a few reduction in the perturbation cooling time, unless the perturbation

is displaced by more than a scale height. The e�ect of dust settling, however, was

much more pronounced. In particular, for hd/hg . 0.1, a disk will be below the

critical cooling time for all realistic surface densities beyond the critical radius rcrit

(with the exact required value for hd/hg depending on the value of ξα). In other

words, with su�cient dust settling, Q . 1 becomes the only relevant requirement for

disk fragmentation beyond the critical radius. Additionally, by combining a displaced
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perturbation with dust settling, the critical value of hd/hg is reduced even further.

Next, we used our three-layer model to explore a range of stellar and disk param-

eters in order to show the e�ects of stellar age, mass, and degree of dust settling on

the viability of disk fragmentation via the gravitational instability. We found that

age has only a minor e�ect on the limits of disk fragmentation, particularly when the

dust is well-settled.

In general, stellar mass serves to set the scale of the fragmentation region. How-

ever, the scaling is shallower than the typical zeroth order approximation indicates.

Thus, care should be taken to extrapolate our results to high-mass stars.

While partial dust settling settling (hd/hg = 0.5) can move the critical fragmenta-

tion radius, rcrit, inward by about 25%, signi�cant dust settling (hd/hg = 0.1) moves

the critical radius in by about an order of magnitude.

Finally, we used our technique for calculating fragment masses (eq. [4.3]) to in-

vestigate where the disk fragmentation mechanism forms giant planets versus brown

dwarfs. Not surprisingly, low-mass stars are more likely to form giant planets while

intermediate-mass stars are likely to form brown dwarfs (it follows that high-mass

stars probably form binary companions). However, if the disk fragmentation occurs

in the presence of dust settling, then slightly less-massive fragments are formed (by a

factor of a few times 10%), except in the regions closest to rcrit, where the fragment

mass is greatly increased.

In conclusion, the gravitational instability remains a viable mechanism for the

formation of giant planets: the perturbation cooling time can be su�ciently short to

allow disk fragmentation over a range of realistic conditions, and geometrical e�ects,

such as dust settling, further reduce the perturbation cooling time to the extent that

cooling is su�cient for all realistic surface densities.
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Appendix A

Boundary Conditions

A.1 One-Layer Model

In order to calculate the unknown constants f ext, Hext
0 , fdiff , and gdiff we utilize

the boundary conditions

f ext =
Kext
I (0)

Jext
I (0)

, (A.1)

Hext
0 = Hext

I (τ0) , (A.2)

fdiff =
Kdiff
I (0)

Jdiff
I (0)

, (A.3)

Hdiff(τ0) = Hdiff
I (τ0) , (A.4)

respectively, where the I-subscript on the intensity moments indicates that they come

from solving the transfer Equations (2.6) and (2.7), which are then used to calculate

the moments J , H, and K. For simplicity, we assume that f ext and fdiff are in-

dependent of depth. Note that while a seemingly more straight-forward alternative

to Equation (A.4) is gdiff = Hdiff(τ0)/Jdiff(τo), we have found that Equation (A.4)

produces a more accurate solution, since Jdiff(τ0) has a larger error arising from the

assumption of constant Eddington factors than Hdiff(τ0) does.
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Using Equations (2.8) and (2.9) for the source functions Sext and Sdiff , the intensity

moments are

Jext
I (0) =

H?

µ?
exp

(
−τ

ext
0

µ?

)
+

ˆ τext
0

0

Sext (t) E1(t) dt

=
H?

µ?
exp

(
−τ

ext
0

µ?

)
− σext

κext

bHext
0

sinh βτ0

ˆ τext
0

0

cosh bt E1(t) dt , (A.5)

Kext
I (0) = µ?H? exp

(
−τ

ext
0

µ?

)
+

ˆ τext
0

0

Sext (t) E3(t) dt

= µ?H? exp

(
−τ

ext
0

µ?

)
− σext

κext

bHext
0

sinh βτ0

ˆ τext
0

0

cosh bt E3(t) dt , (A.6)

Hext
I (τ0) = −H?

2

(
1− e−2τext

0 /µ?

)
+

1

2

ˆ 2τext
0

0

Sext
(
τ ext

0 − t
)
E2(t) dt

= −H?

2

(
1− e−2τext

0 /µ?

)
−1

2

σext

κext

bHext
0

sinh βτ0

ˆ 2τext
0

0

cosh b(τ ext
0 − t)E2(t) dt , (A.7)

and

Jdiff
I (0) =

ˆ τ0

0

Sdiff (t) E1(t) dt

=

[
H0

(
1

gdiff
+

τ0

2fdiff
+

1

τ0

)
−Hext

0

(
1

gdiff
+

1

βfdiff

cosh βτ0

sinh βτ0

)] ˆ τ0

0

E1(t) dt

− H0

2fdiffτ0

ˆ τ0

0

t2E1(t) dt

−
(
β − 1

βfdiff

)
Hext

0

sinh βτ0

ˆ τ0

0

cosh βtE1(t) dt , (A.8)
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Kdiff
I (0) =

ˆ τ0

0

Sdiff (t) E3(t) dt

=

[
H0

(
1

gdiff
+

τ0

2fdiff
+

1

τ0

)
−Hext

0

(
1

gdiff
+

1

βfdiff

cosh βτ0

sinh βτ0

)] ˆ τ0

0

E3(t) dt

− H0

2fdiffτ0

ˆ τ0

0

t2E3(t) dt

−
(
β − 1

βfdiff

)
Hext

0

sinh βτ0

ˆ τ0

0

cosh βtE3(t) dt , (A.9)

Hdiff
I (τ0) =

1

2

ˆ 2τ0

0

Sdiff (τ0 − t) E2(t) dt

=
1

2

[
H0

(
1

gdiff
+

1

τ0

)
−Hext

0

(
1

gdiff
+

1

βfdiff

cosh βτ0

sinh βτ0

)]ˆ 2τ0

0

E2(t) dt

+
H0

2fdiff

ˆ 2τ0

0

t E2(t) dt− H0

4fτ0

ˆ 2τ0

0

t2E2(t) dt

−1

2

(
β − 1

βfdiff

)
Hext

0

sinh βτ0

·
ˆ 2τ0

0

cosh β(τ0 − t)E2(t) dt , (A.10)

where E1, E2, and E3 are exponential integrals, τ ext
0 = (χext/χdiff)τ0, and b =

(χdiff/χext)β. Note that all of the above integrals involving E1, E2, and E3 can

be solved analytically (see Appendix B). The Eddington �ux from the star incident

on the disk is

H? =
µ?
4π

(
R?

r

)2

σT 4
? (A.11)

where µ? is the cosine of the angle between the disk normal and the star, and R? and

T? are the stellar radius and e�ective temperature.
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To �nd f ext, Hext
0 , fdiff , and gdiff , we assume starting values of µ2

?, −H?/2, 1/3, and

1/2, respectively. We then evaluate Equations (A.1)�(A.4) analytically and iterate

until convergence. For temperature-dependent quantities (i.e. opacity), we use the

mid-plane temperature, which is also calculated iteratively.

A.2 Three-Layer Model

In the three-layer model described in � 5.2, the external radiation �eld is split into

three components: direct stellar irradiation, radiation from the two optically thin gas

layers, and 10 K background radiation. The star intensity moments are

J star
I (0) =

H?

µ?
exp

(
−τ

star
0 + τg
µ?

)
−σ

star

κstar

bstarHstar
0

sinh βstarτ0

ˆ τ star
0

0

cosh bstart E1(t) dt , (A.12)

Kstar
I (0) = µ?H? exp

(
−τ

star
0 + τg
µ?

)
−σ

star

κstar

bstarHstar
0

sinh βstarτ0

ˆ τ star
0

0

cosh bstart E3(t) dt , (A.13)

Hstar
I (τ0) = −H?

2

(
1− e−2τ star

0 /µ?

)
e−τg/µ?

−1

2

σstar

κstar

bstarHstar
0

sinh βstarτ0

×
ˆ 2τ star

0

0

cosh bstar(τ star
0 − t)E2(t) dt , (A.14)

where τ star
0 = (χstar/χdiff)τ0 and bstar = (χdiff/χstar)βstar. The surface intensity mo-

ments are
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J surf
I (0) = Sgas

[
E2(τ surf

0 )− E2(τ surf
0 + τg)

]
−σ

surf

κsurf

bsurfHsurf
0

sinh βsurfτ0

ˆ τ surf
0

0

cosh bsurft E1(t) dt , (A.15)

Ksurf
I (0) = Sgas

[
E4(τ surf

0 )− E4(τ surf
0 + τg)

]
−σ

surf

κsurf

bsurfHsurf
0

sinh βsurfτ0

ˆ τ surf
0

0

cosh bsurft E3(t) dt , (A.16)

Hsurf
I (τ0) =

Sgas

2

[
−1

2
+ E3(τg) + E3(2τ surf

0 )− E3(2τ surf
0 + τg)

]
−1

2

σsurf

κsurf

bsurfHsurf
0

sinh βsurfτ0

×
ˆ 2τ surf

0

0

cosh bsurf(τ surf
0 − t)E2(t) dt , (A.17)

where τ surf
0 = (χsurf/χdiff)τ0, b

surf = (χdiff/χsurf)βsurf , and

Sgas =
H?

2µ?

[
1 + exp

(
−2τ0 + τg

µ?

)]
+
σT 4

2π
[1 + E2(2τ0 + τg)]

+
H0 −Hstar

0 −Hsurf
0 −Hbg

0

gdiff
+
Hg

τg
. (A.18)

The background intensity moments are

Jbg
I (0) =

σT 4
bg

π
E2(τbg

0 + τg)

−σ
bg

κbg

bbgHbg
0

sinh βbgτ0

ˆ τbg
0

0

cosh bbgt E1(t) dt , (A.19)
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Kbg
I (0) =

σT 4
bg

π
E4(τbg

0 + τg)

−σ
bg

κbg

bbgHbg
0

sinh βbgτ0

ˆ τbg
0

0

cosh bbgt E3(t) dt , (A.20)

Hbg
I (τ0) =

σT 4
bg

2π

[
−E3(τg) + E3(2τbg

0 + τg)
]

−1

2

σbg

κbg

bbgHbg
0

sinh βbgτ0

ˆ 2τbg
0

0

cosh bbg(τbg
0 − t)E2(t) dt , (A.21)

where τbg
0 = (χbg/χdiff)τ0 and b

bg = (χdiff/χbg)βbg.

The di�use intensity moments are now modi�ed by the addition of the two gas

layers and the background radiation �eld. The modi�ed di�use intensity moments

are

Jdiff
I (0) = H0

(
1

gdiff
+

τ0

2fdiff
+

1

τ0

) ˆ τ0

0

E1(t) dt

− H0

2fdiffτ0

ˆ τ0

0

t2E1(t) dt

−Hstar
0

(
1

gdiff
+

1

βstarfdiff

cosh βstarτ0

sinh βstarτ0

) ˆ τ0

0

E1(t) dt

−
(
βstar − 1

βstarfdiff

)
Hstar

0

sinh βstarτ0

ˆ τ0

0

cosh βstart E1(t) dt

−Hsurf
0

(
1

gdiff
+

1

βsurffdiff

cosh βsurfτ0

sinh βsurfτ0

) ˆ τ0

0

E1(t) dt

−
(
βsurf − 1

βsurffdiff

)
Hsurf

0

sinh βsurfτ0

ˆ τ0

0

cosh βsurft E1(t) dt

−Hbg
0

(
1

gdiff
+

1

βbgfdiff

cosh βbgτ0

sinh βbgτ0

) ˆ τ0

0

E1(t) dt

−
(
βbg − 1

βbgfdiff

)
Hbg

0

sinh βbgτ0

ˆ τ0

0

cosh βbgt E1(t) dt , (A.22)
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Kdiff
I (0) = H0

(
1

gdiff
+

τ0

2fdiff
+

1

τ0

) ˆ τ0

0

E3(t) dt

− H0

2fdiffτ0

ˆ τ0

0

t2E3(t) dt

−Hstar
0

(
1

gdiff
+

1

βstarfdiff

cosh βstarτ0

sinh βstarτ0

) ˆ τ0

0

E3(t) dt

−
(
βstar − 1

βstarfdiff

)
Hstar

0

sinh βstarτ0

ˆ τ0

0

cosh βstart E3(t) dt

−Hsurf
0

(
1

gdiff
+

1

βsurffdiff

cosh βsurfτ0

sinh βsurfτ0

) ˆ τ0

0

E3(t) dt

−
(
βsurf − 1

βsurffdiff

)
Hsurf

0

sinh βsurfτ0

ˆ τ0

0

cosh βsurft E3(t) dt

−Hbg
0

(
1

gdiff
+

1

βbgfdiff

cosh βbgτ0

sinh βbgτ0

)ˆ τ0

0

E3(t) dt

−
(
βbg − 1

βbgfdiff

)
Hbg

0

sinh βbgτ0

ˆ τ0

0

cosh βbgt E3(t) dt , (A.23)

Hdiff
I (τ0) =

1

2
H0

(
1

gdiff
+

1

τ0

) ˆ 2τ0

0

E2(t) dt

+
H0

2fdiff

ˆ 2τ0

0

t E2(t) dt− H0

4fτ0

ˆ 2τ0

0

t2E2(t) dt

−H
star
0

2

(
1

gdiff
+

1

βstarfdiff

cosh βstarτ0

sinh βstarτ0

) ˆ 2τ0

0

E2(t) dt

−1

2

(
βstar − 1

βstarfdiff

)
Hstar

0

sinh βstarτ0

ˆ 2τ0

0

cosh βstar(τ0 − t)E2(t) dt

−H
surf
0

2

(
1

gdiff
+

1

βsurffdiff

cosh βsurfτ0

sinh βsurfτ0

) ˆ 2τ0

0

E2(t) dt

−1

2

(
βsurf − 1

βsurffdiff

)
Hsurf

0

sinh βsurfτ0

ˆ 2τ0

0

cosh βsurf(τ0 − t)E2(t) dt

−H
bg
0

2

(
1

gdiff
+

1

βbgfdiff

cosh βbgτ0

sinh βbgτ0

) ˆ 2τ0

0

E2(t) dt

−1

2

(
βbg − 1

βbgfdiff

)
Hbg

0

sinh βbgτ0

×
ˆ 2τ0

0

cosh βbg(τ0 − t)E2(t) dt . (A.24)
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Appendix B

Integrals Involving E1, E2, and E3

B.1 Integrals Involving E1

ˆ x

0

E1(t) dt = 1− E2(x) (B.1)

ˆ x

0

t2E1(t) dt =
2

3
− 2E4(x)− 2xE3(x)− x2E2(x) (B.2)

ˆ x

0

cosh atE1(t) dt =
sinh ax

a
E1(x)

+
E1[(1 + a)x]− E1[(1− a)x] + ln

(
1+a
1−a

)
2a

(B.3)

B.2 Integrals Involving E2

ˆ x

0

E2(t) dt =
1

2
− E3(x) (B.4)
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ˆ x

0

tE2(t) dt =
1

3
− E4(x)− xE3(x) (B.5)

ˆ x

0

t2E2(t) dt =
1

2
− 2E5(x)− 2xE4(x)− x2E3(x) (B.6)

ˆ x

0

cosh atE2(t) dt =
sinh ax

a
E2(x) +

cosh ax

a2
E1(x)

−E1[(1 + a)x] + E1[(1− a)x] + ln(1− a2)

2a2
(B.7)

ˆ 2x

0

cosh a(x− t)E2(t) dt =
sinh ax

a
E2(2x) +

sinh ax

a
+

cosh ax

a2
E1(2x)

−eax
(
E1[2(1 + a)x] + ln(1 + a)

2a2

)
−e−ax

(
E1[2(1− a)x] + ln(1− a)

2a2

)
(B.8)

B.3 Integrals Involving E3

ˆ x

0

E3(t) dt =
1

3
− E4(x) (B.9)

ˆ x

0

tE3(t) dt =
1

4
− E5(x)− xE4(x) (B.10)

ˆ x

0

t2E3(t) dt =
2

5
− 2E6(x)− 2xE5(x)− x2E4(x) (B.11)
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ˆ x

0

cosh atE3(t) dt =
sinh ax

a
E3(x) +

cosh ax

a2
E2(x) +

sinh ax

a3
E1(x)− 1

a2

+
E1[(1 + a)x]− E1[(1− a)x] + ln

(
1+a
1−a

)
2a3

(B.12)
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