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The gravitational instability provides a means of rapidly forming giant planets
with large orbital radii. For protoplanetary disks to be unstable to gravitational
fragmentation, they must 1) have a Toomre @ < 1 and 2) be able to cool the excess
energy from a collapsing perturbation in less than the dynamical time (Qtcoo < 1).
We present an analytical technique for calculating this perturbation cooling time for
externally illuminated disks and/or disks with internal heating. We compare our
analytical technique with a numerical Monte Carlo code, and find good agreement.

We use our analytical technique to test the ability of the gravitational instability
to re-create the observed planetary systems of Fomalhaut, HR 8799, and HL Tau.
We find that the required mass interior to the planet’s orbital radius is ~ 0.1 M, for
Fomalhaut b, the protoplanet orbiting HL. Tau, and the outermost planet of HR 8799.
The two inner planets of HR 8799 probably could not have formed in situ by disk
fragmentation.

The perturbation cooling time can be reduced significantly through the inclusion
of geometrical effects, specifically fragmentation originating at a location other than
the disk mid-plane, and/or dust settling. In particular, dust settling to one-tenth
of the gas scale height can reduce the perturbation cooling below the fragmentation

threshold for all surface densities & < 10 g/cm?.
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We study the fragmentation criteria and fragment masses produced for a grid of
parameters covering protostellar masses ranging from 0.1-5 M, ages ranging from
0.5-10 Myr, and differing degrees of dust settling. We find that the instability criteria
and fragment mass scales with protostellar mass (as expected), while the protostellar
age (i.e., luminosity) provides only a modest effect—indicating that disk fragmenta-
tion is equally likely at all stages of protostellar evolution, given sufficiently high disk
mass. Dust settling can lead to disk fragmentation at orbital radii that are an order

of magnitude smaller than in the unsettled case.
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Chapter 1

Introduction

As more extrasolar planets are discovered, we are increasingly pressed to describe
how planets can form in such a variety of environments. Until just recently, obser-
vational selection biases have resulted in the fact that all observed extrasolar planets
have been found to orbit within a few AU of their star (Butler et al., 2006). Since it
seems unlikely that these planets could have formed in situ (Mayor & Queloz, 1995),
planet migration is usually invoked (Alibert et al., 2005). Unfortunately, this means
that little is known about where—and hence how—these planets originally formed.

Recently, the technique of direct-imaging has begun to present us with a new set
of extrasolar planets that lie far from their star (Kalas et al., 2008; Marois et al.,
2008; Greaves et al., 2008). Like previous techniques, direct imaging preferentially
detects giant planets of several Jupiter masses. Furthermore, planet migration need
not be invoked to explain how these planets could form at their observed locations.

The goal of this dissertation is to evaluate the efficacy of the gravitational in-
stability at forming giant planets with large orbital separation from their star. To
that end, we focus on the issue of radiative cooling, which is a key criterion for the

fragmentation of a gravitationally unstable disk.



1.1 Planet Formation

One possible mechanism for giant planet formation is core accretion followed by
rapid gas accretion (Pollack et al., 1996; Inaba et al., 2003). In this mechanism,
planets begin their lives as micron-sized dust grains. During collisions, these grains
can stick together. Initially, the aggregate growth of grains depends on dipole-dipole
attraction, along with compaction.

Once these particles reach sizes of 10 c¢m, their fate becomes less clear. Experi-
mental work has shown that particle collisions begin to lead to severe fragmentation
once particle sizes reaches ~ 10 cm (Blum & Wurm, 2008). Furthermore, meter-sized
objects are expected to experience significant gas drag, leading to rapid accretion
onto the central star. Nonetheless, assuming sufficient size is reached (approximately
10 m), these planetesimals decouple from the gas, and begin to efficiently sweep up
material. If a planetesimal is able to accrete enough mass (typically in the form of
ices), it begins to rapidly capture gas, ultimately becoming a gas giant planet. Less
massive objects become asteroids, comets, terrestrial planets, or dwarf planets, while
massive gas-starved objects become either ice giants or “super earths”.

While ideal for explaining “small” objects ranging from asteroids to terrestrial
planets, the core accretion mechanism has difficulty forming giant planets at large
radii. The primary reason for this is that the initial core accretion time scales as 3,
where r is the orbital radius of the planet (Ikoma et al., 2000; Kenyon & Bromley,
2008). Thus, while it may take ~ 1 Myr to form a gas giant at 5 AU via core accretion,
it would take ~ 1 Gyr for the same process at 50 AU—far longer than the ~ 3 Myr
observed lifetimes of protoplanetary disks (Haisch et al., 2001).

Another mechanism for giant planet formation is disk fragmentation as a conse-
quence of the gravitational instability (Kuiper, 1951; Cameron, 1978; Boss, 1997, see
also the recent review by Durisen et al. 2007 and Stamatellos & Whitworth 2009 for

recent developments). Provided that the disk surface density is sufficiently large, this
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mechanism can form giant planetary embryos on time scales of a few orbital periods.
However, if the surface density is too large, the disk is unable to cool sufficiently
fast for fragmentation to take place at all (Rafikov, 2005). The combination of these
requirements implies gravitational instability can only form massive planets at large

radii.

1.2 Disk Fragmentation

In order to be unstable to fragmentation, a disk first needs to have a large enough
surface density to be gravitationally unstable (Toomre, 1964). Such a disk will de-
velop spiral density waves. If in addition to this first requirement, there also exist lo-
cations in the disk where the radiative cooling timescale is shorter than the dynamical
timescale, the spiral density waves can proceed to collapse, leading to fragmentation
of the disk (Gammie, 2001; Rice et al., 2003; Rafikov, 2005).

The gravitational stability of a thin, Keplerian disk is described by the Toomre

(1964) @ parameter
cs§)

where ¢, is the isothermal sound speed, (2 = \/W is the Keplerian frequency,

and X is the surface density. The disk becomes gravitationally unstable for @ < 1.
While the Toomre @ is relatively straight-forward to evaluate for a given disk, the

cooling constraint is somewhat more complex. From a timescale argument, a disk can

fragment if the cooling time is shorter than the dynamical time:

Qoo < 1. (1.2)

~

At issue is that there are arguably two different cooling timescales. The first

controls the onset and initial growth of fragmenting gravitational instabilities. We call



this timescale the perturbation cooling time, since it represents the disk’s efficiency at
shedding excess internal energy. The second cooling timescale governs the subsequent
evolution of any produced fragments, and represents the time it would take for a disk
to radiate away all of its current internal energy. We call this second timescale the
total cooling time.

We wish to stress, however, that in a purely numerical approach (i.e., a hydro-
dynamical simulation), this distinction between perturbation and total cooling times
is a somewhat arbitrary choice, since either can be used to parametrize the radia-
tive cooling term in the fluid energy equation. Nonetheless, an analytic study of the
perturbation cooling time gives us insight into the dominant physical processes that
influence the onset of disk fragmentation.

The remainder of this dissertation is organized as follows. In Chapter 2, we develop
an analytic approximation for the perturbation cooling time for a circumstellar disk.
In Chapter 3, we compare our analytic approximation with a numerical Monte Carlo
code. In Chapter 4, we apply our technique for calculating perturbation cooling
times to the planetary systems of Fomalhaut, HR 8799, and HL Tau' to derive the
required disk mass to form these planets. We also calculate fragment masses expected
to result from disk fragmentation and compare with the observed masses of these
planets. In Chapter 5, we extend our cooling time calculations to include the effects of
vertically displaced perturbations (e.g., arising from fragmentation along an inclined
orbit), along with the effects of dust settling. In Chapter 6, we further explore the
consequences of dust settling by finding the instability criteria and expected fragment
masses for a range of stellar masses, ages, and different degrees of dust settling.
We summarize our results in Chapter 7. In Appendix A, we present the detailed

mathematics of our iterative method for solving the boundary conditions described

LAt the time of writing, there is still some debate concerning whether HL Tau b is actually a
background object.



in Chapters 2 and 5. In Appendix B, we provide analytic solutions for selected

integrals of exponential integrals needed in Appendix A.



Chapter 2

Perturbation Cooling Time

In thermal equilibrium, the temperature of a circumstellar disk is set by balancing
the local heating rate (incident stellar radiation plus viscous energy generation) with
the cooling rate (thermal emission). If the heating term is locally perturbed, e.g.
from energy released during the collapse of a point-like, self-gravitating clump, then
the temperature of the disk rises by an amount AT. The timescale for the system to

return to thermal equilibrium is

AFE

t = — 2.1
cool AL ) ( )

where t.. is the local perturbation cooling time, and AF and AL are the excess
internal energy and luminosity, respectively. Both AE and AL arise as a result of the
temperature perturbation AT'. In contrast, the total cooling time ¢t = E** /L% jg
the timescale for the system to dissipate all of its internal energy. Note that unlike
the total cooling time, the perturbation cooling time automatically accounts for the
heating effects of external illumination.

In the thin disk approximation, cooling can only occur through the top and bottom

surfaces of the disk. Thus, for a given radius, we can treat the disk as a 1-D plane-



parallel atmosphere. More explicitly,

. A
' T 8rAH, ’

(2.2)

where A€ is the excess internal energy per unit surface area, and AHy = (dAL/dA)/8x

is the excess Eddington flux at the disk surface. Writing A€ in terms of AT,

1 1 kg [T AT
teool = dr 2.
! 8tAH, <’y— 1) ,umH/ X T (23)

—70

where kp is Boltzmann’s constant, v and p are the adiabatic constant and mean
molecular weight of the gas, mpy is the mass of atomic Hydrogen, x is the mean
opacity (absorption plus scattering), 7 is the vertical optical depth coordinate, and 74
and —7y are the values of 7 at the top and bottom surfaces of the disk, respectively.
Note that we place 7 = 0 at the disk mid-plane rather than at the top surface.
Consequently, the total optical depth of the disk is 27.

We write the temperature perturbation AT in terms of the frequency-integrated
Planck function B and its perturbation AB,

1 7 B\

where T, and B,, are the temperature and Planck function at the disk mid-plane.

Substituting this into Equation (2.3), we obtain

1 2 11 (/B\* AB
teool = 7% Cm __/ - dr , (25)
16y—10T2x Jo \Bn AH,

where ¢, = \/(kgTn)/(1tgmu) is the isothermal sound speed at the disk mid-plane.

In addition, we make the simplifying assumption that y is independent of depth, and

is consequently well characterized by the mid-plane value. This is a good assump-



tion when self-heating is small and the disk is approximately vertically isothermal.
However, when self-heating dominates (i.e., when there is a large vertical temperature
gradient), this assumption may begin to break down. This issue is further investigated

in Chapter 3. To find B and AB, we solve the equations of radiative transfer.

2.1 Radiative Transfer

In order to account for the absorption and reprocessing of external radiation, along
with viscous energy generation, we need to consider a minimum of two frequency
ranges. Faxternal corresponds to radiation emitted from the star and absorbed or
scattered by the disk. Diffuse corresponds to radiation emitted by the disk as a result
of viscous energy generation or by re-emission of absorbed ezternal radiation. For
simplicity, we assume gray opacity (i.e., the appropriate mean for both the external
and diffuse radiation) and negligible thermal emission from the disk at the external
frequencies (i.e., the star and disk are at significantly different temperatures). Since

the transfer equation is linear, we can split it into two pieces.

d]ext

MdTeXt — Sext o [ext , (26)
d[diﬂ ) )

,ud — — Sdlff _ [dlff ’ (27)
rdi

where here p is the cosine of the angle between the propagation direction and the

unit normal to the disk surface, and I and I4f are the mean intensities for the

external and diffuse radiation, respectively. Note that the optical depth coordinates

7%t and 74 may be significantly different.



The source functions S are given by

O.ext

ext ext
gt — WJ : (2.8)
O.difdeiff + KdiﬂB

diff
U = i , (2.9)

where J is the mean intensity, and o and k are the scattering and absorptive opacities,

t ext

respectively. We set ¢ and k" equal to the frequency-dependent scattering and

absorption at the Wien peak of the star’s effective temperature, and likewise, o%iff

and x4 are set to their values at the Wien peak of the disk’s mid-plane temperature.

We choose to work in terms of the diffuse optical depth coordinate, so we use
7t = (ot /I 7 6 eliminate 7% in favor of 74, Taking the y-moments of the
transfer Equations (2.6) and (2.7), and using the Eddington factors fe* = Kt/ jext

and 4 = K4/ JAf £6 close the set of equations, we arrive at the moment equations

dHext :‘ieXt oxt
d Jext Xext Hext
dr T R e (2.11)
d Hdiff ﬁdiff )
= —— (B - J4f 2.12
- i ) (2.12)
d Jdiff Hdiff

where H is the Eddington flux.
We solve the external radiation field using the moment Equations (2.10) and

(2.11). The Eddington flux is

oxt SiNh BT

Hext — H
sinh 871

(2.14)

where HS' = HY(7y), and 8 = ™\ /[(x3T)2 f4]. Note that HZ is the net sur-

face flux and does not equal the incident irradiation, owing to the effects of scattering.



This difference accounts for the albedo of the disk at the external frequencies. The

mean intensity is

ﬁXdiH ext COSh /67—
ket 0 ginh By

JX = — (2.15)

The diffuse radiation field has three sources of energy: accretion luminosity Lgcc
with surface flux Hy = (dL../dA)/8m, absorption of external radiation —dH®*/dr,
and the point-source perturbation at the mid-plane AHyd(7). The Eddington flux is
thus

HYT — HOTLO — H™" + AHysgn(7) . (2.16)

From moment Equation (2.13), the mean intensity is

. . 1 70 .
Jdlff _ Jdlff(TO) + W/ Hdlff dt

2 — 72 1 cosh By — cosh B7 1
= Hy ( : aE d'ff) — Hg* ( g'f—? ; J + d'ff)
2fdiftry g B4 sinh By g

— 1
raty (2 + o) | 17)

where the second Eddington factor g8 = HYT (7)) /J4 (7). The condition of ra-
diative equilibrium (moment Equation [2.12]) gives the Planck Function in terms of

Hdiff and Jdiff

B Jdiff N Xdiff deiff
rAft dr
) diff H, K,eXt diff
_ Jdlff + :diﬂT_OO + pr Jext + 2:diff AH05(7—) . (218)

Subtracting B(AHy = 0), we find the perturbation

7o — |7 1 X
AB = AH, ( i + S + QRdiﬁé(T)) . (2.19)

10



Plugging this result into the cooling time (eq. [2.5]), we find the expression

1 2 1 1 B\ To— T 1 ydift
teool = — = ; -_— — — | d — 2.20
' 167 — LoTt yaif [ /0 ( Bm) ( Fait ™ gdlﬂ> T+ an (2:20)

We describe an iterative method for finding the unknown constants fe<t, Hxt, fdiff

and g% in Appendix A.

2.2 Analytic Limits for a Vertically Isothermal Disk

If self-heating from accretion is negligible (Hy < H§*), or if the disk is optically
thin (79 < 1), then the disk is vertically isothermal, B/B,, — 1, and Equation (2.20)
can be integrated analytically. In the former case, there is still a temperature rise in
the surface layers, but since most of the internal energy is stored in the interior of the

disk, the error is minimal. The cooling time (eq. [2.20]) simplifies to

1 & 1 diff y72 by 1
‘m (X ) (2.21)

tcoo - T B + ’ + s
' 16 v —10T4 \ gfdiff 2gdiff 1 diff
The first term in parentheses dominates in the optically thick (79 > 1) limit, while the
last term dominates in the optically thin (7 < 1) limit. The middle term becomes
important for intermediate optical depths (79 ~ 1), and represents the effects of the
temperature perturbation at the disk surface.

In the optically thick (7o > 1) limit, the Eddington factor f4¥ — 1/3, and

2
3 I diffeo

tcoo = 740 A .
1= 198y — 1072 X

(2.22)

In the optically thin (75 < 1) limit, the perturbation cooling time becomes con-

11



stant with respect to X
1 1 1

teool = — —— — . 2.23
T 16y — 1 oT1 4l (223)

For a given mid-plane temperature, the optically thin limit provides the shortest

possible perturbation cooling time.

2.3 Self-Heated Limit

In the limit where self-heating becomes dominant (Hy > H*"), the ratio
2
Bﬁ 1 <l) , (2.24)

where we have also made the assumption that the disk is optically thick (75 > 1),
consistent with a locally high accretion rate. The optically thick, perturbation cooling

time is

tool = 1 11 7 /T°<1_T_2)3/4<1_l)d7
0 16y — 1 0T4 ydiff fdiff Jo e 7o

1

2

32 1 e 33
- = m i Z F “oe.
647 — 1oTA Y \272

—_
N——
I
N}
—_

2

c 1 .
0.029—m__— ., diffy2 2.25
v—1 UTSﬁX ’ ( )

Q

where oF) is the hypergeometric function, and f4f — 1/3. Note that while the
explicit Y-dependence is the same as for the vertically isothermal case, the mid-
plane temperature 7,, will also increase with Y, due to an associated increase in the
accretion luminosity.

We can characterize the dependence of the mid-plane temperature on the surface

density explicitly in the case of quasi-steady-state a-disks (Shakura & Sunyaev, 1973).

12



When the viscous shear-stress (i.e., accretion) is the dominant source of heating,

9
Hy = —ac2 Q% 2.2

where 0 < a < 1 is the parameter introduced by Shakura & Sunyaev (1973) to
account for turbulent viscosity (i.e., the effective kinematic viscosity is v = acp,h,
where h is the disk scale height). In the optically thick, self-heated limit, the Planck

function (eq. [2.18]) at the mid-plane simplifies to

3
Bm == §HOTO y (227)

which together with Equation (2.26) gives

27 ;
oTh = ﬁacanxdﬂZP . (2.28)

Substituting this result into the cooling time (eq. [2.25]) gives the behavior for large

h3F
y N 0.138 1
cool ™~ Oé("}/— 1)Q .

(2.29)
We see that the cooling time is in fact constant with ¥ for large surface densities. In
addition, the cooling time becomes opacity-independent in this limit, and thus the
temperature of the disk becomes mostly irrelevant (excluding secondary effects on
and possibly «).

Recall that a gravitationally unstable (@ < 1) disk will fragment only if Qo0 < &,

where ¢ is a constant of order unity. Using Equation (2.29) for t.., we find that a

high-¥ disk can fragment only if

0.138

13



Using £ = 1 and v = 1.43, we find a typical lower limit of a > 0.32 for fragmentation.
Note that this is similar in magnitude to the Gammie (2001) result, but with a
different numerical constant owing to the difference between total and perturbation
cooling times. Since typical values for « are 0.01-0.1 for massive disks (Zhu et al.,
2009), we conclude that extremely large surface densities are, in general, detrimental
to disk fragmentation. An important caveat, however, is that if the surface density
is increased to such an extent that the mid-plane temperature rises above the dust
sublimation threshold, then the cooling time will begin to decrease as the interior of

the disk becomes optically thin and isothermal.
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Chapter 3

Monte Carlo Comparison

In order to test the validity of our analytic perturbation cooling time calcula-
tion, we compare our results to those from a 1-D, plane-parallel numerical code. The
numerical code uses a Monte Carlo radiative equilibrium calculation for the surface
layers (7 < 10) and diffusion approximation for the interior (7 2 10), and was devel-
oped to closely match the geometry and energy sources of our analytic approximation.
As in our analytic approximation, the atmosphere is externally illuminated from both
sides, and self-heating from accretion is included (using eq. [2.26]). In the following
comparisons, we consistently use a 0.5 My, 2 Ry, 4000 K star with a power-law scale
height h oc /4 for the disk, with a Shakura-Sunyaev o parameter of 0.1. We assume
a mean molecular weight © = 2.33 and an adiabatic gas constant of v = 1.43. For full
details on the radiative equilibrium temperature calculation used in the Monte Carlo
surface layers, see Bjorkman & Wood (2001). In the cases were the vertical optical
depth is sufficiently small (7 < 10), the entire atmosphere is computed using Monte
Carlo.

To find the perturbation cooling time numerically, we use Equation (2.3), where
AHy and AT are found by solving for the temperature structure twice: first as

a background solution, and then with a small source of internal energy added at

15



the mid-plane. We then subtract to find the differences. Note that this numerical
method avoids the major simplifying assumptions of our analytic approximation. In
particular, our analytic approximation assumes that both opacities and Eddington
factors are vertically uniform, while the Monte Carlo simulation does not. We also
assumed that we could reproduce the relevant radiative physics using a quasi-gray
assumption with only two relevant frequencies (ezternal and diffuse), while the Monte
Carlo simulation calculates the radiation field with the full frequency dependence and

anisotropic scattering by the dust.

3.1 Gray Opacity

We begin our comparison using a purely absorptive, gray opacity (with x =k =
1 ¢m?/g). This comparison allows us to isolate the effects of assuming vertically
uniform Eddington factors. The usage of a purely absorptive atmosphere also has
the advantage of simplifying the solution of the external radiation field considerably.
In this limit f** — p?, HZ — H,/2, and 8 — 1/u, (for details on solving for
the boundary conditions f' and H$* see Appendix A). Furthermore, since g4t
is by definition depth-independent, the only potential source of error is the depth-
dependence of the diffuse Eddington factor f4if:

The mid-plane temperatures at 1, 10, and 100 AU are shown as a function of sur-
face density in Figure 3-1. Note that we end the comparison at the dust sublimation
temperature, since neither of our approaches were developed to account for a sudden
vertical transition from dust to gas as the primary opacity source.

In general, the analytic approximation is in good agreement with the Monte Carlo
(for the gray case). However, there is some slight deviation for surface densities
near unity, corresponding to optical depths near unity. This is not surprising, since

this is where the effect of an incorrect diffuse Eddington factor f4 would be most
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Figure 3-1: Comparison of the mid-plane temperature as a function of surface density
for both our analytic approximation (lines) and full numerical calculation (points),
using a purely absorptive, gray opacity with x = x = 1 ¢cm?/g. Comparisons are
made at 1 AU (solid lines and filled points), 10 AU (dashed lines and crosses), and
100 AU (dotted lines and pluses) from a 0.5 My, 2.0 Re, 4000 K star.
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pronounced. At these optical depths, the erternal radiation will have been completely
absorbed in the surface layers, yet the disk is not yet optically thick to its own
diffuse radiation. For smaller optical depths, the disk is dominated by the well-
determined ezternal radiation field, while at higher optical depths, the disk is well
into the diffusion limit.

In Figure 3-2, we plot vertical slices of the disk temperature at 100 AU for surface
densities of 1074, 10°, and 10" g/cm?, highlighting the optically thin, intermediate,
and self-heated limits, respectively. Since the erternal radiation field sets the tem-
perature rise at the disk surface—and is well determined for the purely absorptive
limit—the Monte Carlo and analytic calculations are, not surprisingly, in good agree-
ment.

In Figure 3-3, we plot a comparison of the perturbation cooling time as calculated
using our analytic approximation and Monte Carlo solution. With the exception of
some disagreement for surface densities (and optical depths) near unity, both tech-
niques for calculating the perturbation cooling time are in good agreement. The
deviations near unity are caused by the somewhat inaccurate calculation of the mid-

plane temperature as a result of neglecting the vertical dependence of f&ff,

3.2 Non-Gray Opacity

We now extend our comparison to include the effects of a more realistic opacity
model. Using the dust opacity model of Wood et al. (2002), we plot comparisons of
mid-plane temperature in Figure 3-4, vertical temperature slices in Figure 3-5, and
perturbation cooling time in Figure 3-6. As in the gray case, the vertical dependence
of f4 leads to inaccurate mid-plane temperatures for optical depths of order unity.
To some extent, this effect is exacerbated by the vertical temperature dependence of

the dust opacity (fortunately, the disk is mostly isothermal at these optical depths).
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Figure 3-2: Comparison of the vertical temperature structure for both our analytic
approximation (lines) and full numerical calculation (points), using a purely absorp-
tive, gray opacity. Comparisons are made for surface densities of 1073 g/cm? (solid
lines and triangles), 10° g/cm? (dashed lines and squares), and 10 g/cm? (dotted lines
and diamonds), highlighting the optically thin, intermediate, and self-heated limits,
respectively. All three comparisons are made at 100 AU from a 0.5 Mg, 2.0 Rg,
4000 K star.
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Figure 3-3: Comparison of the perturbation cooling time (normalized to the Keplerian
orbital angular frequency 2) as a function of surface density for both our analytic ap-
proximation (lines) and full numerical calculation (points), using a purely absorptive,
gray opacity. Comparisons are made at 1 AU (solid lines and filled points), 10 AU
(dashed lines and crosses), and 100 AU (dotted lines and pluses) from a 0.5 Mg,
2.0 Rp, 4000 K star.
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Furthermore, as shown in Figure 3-5, the detailed shape of the vertical temperature
structure of the disk depends on the solution to the external radiation field. By
matching the boundary conditions for f®** at the mid-plane, we sacrifice the accuracy
of the temperature in the surface layers. This was done to improve our calculation
of the mid-plane temperature, which plays a much larger role in determining t.q
than the surface effects do. Nonetheless, our analytic mid-plane temperatures can
differ by up to 20% from the Monte Carlo result. Despite these effects, our analytic
approximation to the perturbation cooling time remains in good agreement with the
Monte Carlo (Figure 3-6), with the largest disagreement of 50% around optical depth

unity, which arises primarily from inaccuracies in the mid-plane temperature.
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Figure 3-4: Same as Figure 3-1, but with the dust opacity of Wood et al. (2002).
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Figure 3-5: Same as Figure 3-2, but with the dust opacity of Wood et al. (2002).
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Figure 3-6: Same as Figure 3-3, but with the dust opacity of Wood et al. (2002).
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Chapter 4

Fragment and Disk Masses

In this chapter, we consider the planet Fomalhaut b (Kalas et al., 2008), the
triple-planet system HR 8799 (Marois et al., 2008), and the potential protoplanet
orbiting HL Tau (Greaves et al., 2008). Each of these systems possesses at least one
planet with orbital characteristics favored by the disk fragmentation mechanism. By
determining the range of surface densities required to form a giant planet with the
same semi-major axis as these observed planets, we can infer the range of disk masses

needed for the fragmentation mechanism to have operated in these systems.

4.1 Fragment Masses

When determining if disk fragmentation is a viable mechanism for forming giant
planets, an important point to consider is the issue of producing the proper planetary
mass of a few Myypiter- While a full treatment of this problem is beyond the scope of
this work, we provide a toy model to argue that this is likely to be the case.

If @ <1 at some radius r, the disk becomes gravitationally unstable. Supposing

m spiral arms form, each arm has local surface density

TCOSQ T
m R

S = (4.1)

25



where ¥ is the original surface density of the previously axisymmetric disk, R is the
current width of the spiral arms, and ¢ is the winding angle of a logarithmic spiral.
For simplicity, we assume that most of the disk mass is confined to the spiral arms,
while the space between the arms is effectively empty.

If Qtcoor 2= 1, then the spiral arms are pressure supported and are stable against
fragmentation. However, if Qt.,o < 1, then the arms are instead supported by cen-
trifugal forces. As R continues to decrease, they will fragment radially once the
centrifugal support is lost. Balancing self-gravity against the centrifugal support,

O2R = 7GY 4, fragmentation occurs when

[ 72 >
R< Ry =1r? %M : (4.2)

where M, is the stellar mass. The fragment mass is WR?Earm, so assuming a few

moderately wound spiral arms 72cosp/m ~ 1, we find a characteristic fragment

> 3/2 M —1/2 , 3
M ~ 1 Mjupier | ———— * (—> , 4.
/ Jupit (10gcm—2> (MQ) 100 AU (4.3)

which is consistent with our requirement to produce Jupiter-mass planets.

mass

4.2 Disk Mass Limits

The condition that both the Toomre () and the cooling time be sufficiently small
can be used to place limits on what disk surface densities lead to fragmentation. To be
gravitationally unstable, the Toomre () condition requires that the surface density be
larger than a minimum, ¥,;,,, while the cooling condition imposes a maximum surface
density, X ax- Therefore, local disk fragmentation is only possible if ¥ ;, < 2 < Xjax.
It of course follows that for fragmentation to be possible at all, >,,;, must be less than

Ymax- This limits the range of radii were fragmentation is even a possibility.
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Figure 4-1: Surface density limits for disk fragmentation. The solid line denotes Xy,
which is the maximum surface density for the cooling time constraint. The dashed
line denotes the minimum surface density for fragmentation, ¥,,;,, which is the locus
Toomre ) = 1. Disk fragmentation is only allowed in the region ¥,.« > Y, Which
is shaded gray. The locations of known planets are plotted as vertical dotted lines.
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Table 4.1: Parameters Used for Each System

Object M, R, T, Tplanet(s)
(M) (Ro) (K) (AU)
Fomalhaut b 2.0 1.8 8500 >101.5¢
HR 8799 b, c, d 1.5 1.8 8200 68, 38, 240
HL Tau b 0.3 0.6 3700 65°¢

®Chiang et al. (2009)
bMarois et al. (2008)
°Greaves et al. (2008)

In Figure 4-1, we plot X, and .« for the systems Fomalhaut, HR 8799, and
HL Tau, using the parameters listed in Table 4.1. In all cases we used an accretion
rate of 1079M, /yr (which sets the net Eddington flux Hy), a mean molecular weight
for the disk of ;1 = 2.33, and an adiabatic gas constant of v = 1.43. The temperature
is determined from Equation (2.18), using a flared disk model with a power law scale

height h o r°/4, which determines the angle of incidence of the external radiation

(Kenyon & Hartmann, 1987)

dh/dr — h/r

* — . 4.4
T A+ (dhjdr)A 44

We use the dust opacity of Cotera et al. (2001), which assumes icy dust grains.
We note that the stellar parameters in Table 4.1 are not necessarily appropriate if
planet formation occurs during the Class 0/ phase when the star is significantly more
luminous. However, our results are relatively insensitive to this effect, since T}, is only
weakly dependent on the stellar luminosity.

Each system presented here has a planet that might have formed via disk fragmen-
tation, assuming that the local surface density had a value between X,;, and X,
for at least a few orbital periods. By assuming a power law for the surface density,

¥ o 7P, we can calculate a range of disk masses (interior to 7planet) that satisfies this
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Table 4.2: Range of Disk Masses that Fragment

Object by Md (p = 05) Md (p = 10) Md (p = 15) Mf
(g cm™?) (Mo) (Mo) (Mo) (Myupiter)
Fomalhaut b 35-94 0.17-0.45 0.26-0.68 0.51-1.36 21
HR 8799 b 62-89 0.14-0.19 0.20-0.29 0.41-0.58 4-7
HL Tau b 21-43 0.04-0.09 0.06-0.13 0.13-0.26 2-4
condition.

A survey of 24 circumstellar disks by Andrews & Wiliams (2007) found p ~ 0.0-1.0
with an average of p ~ 0.5, while the hydrodynamical simulations of Vorobyov & Basu
(2009) found p ~ 1.0-2.0 with an average around p ~ 1.5. Disk mass limits M, for
p = 0.5, 1.0 and 1.5, along with the more fundamental surface density limits are given
in Table 4.2. We also provide the characteristic fragment mass (approximate planet
mass) M; from Equation (4.3) that we would expect from the disk fragmentation
mechanism. Also note that, in order to be conservative, we are using the smallest
radius found by Chiang et al. (2009) for Fomalhaut b. Using one of their better fits
(e.g. 115 AU) will decrease our lower disk mass limit by a few percent, increase our
upper disk mass limit by ~ 30% (which would make fragmentation slightly easier),

and increase the characteristic fragment mass by ~ 50%.

4.3 Discussion

While the ranges in Table 4.2 only span a factor of a few, this is not by itself a
significant limitation. Even if the local surface density is above the upper instability
limit, fragmentation may still occur since the surface density must eventually drop
through the unstable regime as the disk evolves and dissipates. The caveat is that
the surface density needs to evolve on a timescale longer than an orbital period so
that there can be sufficient time to fragment.

Our minimum disk masses for Fomalhaut b, HR 8799 b, and HL Tau b are about
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an order of magnitude larger than those inferred from observations (Andrews & Wil-
iams, 2007). Note, however, that this is a problem for all planet formation models in
general. Even core accretion models require an enhanced surface density (although
to a somewhat lesser extent) (Pollack et al., 1996; Inaba et al., 2003). One possible
mechanism for increasing the surface density is mass loading from an infalling enve-
lope (Vorobyov & Basu, 2006). Conversely, current estimates of disk masses may be
too low because they depend on: 1) the extrapolation of surface densities in the out-
ermost regions of the disk to the inner disk, and 2) the rather uncertain dust opacity.
For example, larger dust grains would require larger disk masses to fit the observed
spectral energy distributions (Andrews & Wiliams, 2007).

As further evidence for underestimated disk masses, numerical hydrodynamical
simulations by Vorobyov (2009) found disk masses much higher than those of Andrews
& Wiliams (2007). In particular, stars like Fomalhaut and HR 8799 can support disks
as large as 0.5 M, while HL Tau could have a disk as massive as 0.1 My, all of which
are within our limits for disk fragmentation. We caution, however, that our choice
of opacity model can have a major effect on our results. For example, decreasing the
dust opacity raises the temperature and decreases the cooling time in the outer disk,
resulting in disk fragmentation at smaller radii. On the other hand, increasing the
opacity would have the opposite effect.

Regardless of the above considerations, HR 8799 ¢ and d are too close to their par-
ent star to have formed in situ via fragmentation under the conditions modeled here.
Appealing to chronically overestimated dust opacity can only get us so far. Dropping
the opacity by an order of magnitude brings HR 8799 c into the fragmentation zone,
but still leaves HR 8799 d out. Likewise, twiddling other parameters can also move
the fragmentation radius inward, but reaching the required 24 AU with reasonable
parameters does not seem possible. We therefore conclude that HR 8799 ¢ and d

likely did not form in situ as the result of disk fragmentation (of course, they could
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have formed at larger radii were the disk is more likely to fragment and migrated
inward).

For those planets that could form by disk fragmentation, we find characteristic
fragment masses (approximate planet masses) of a few Mjypiter for the lower end of
unstable disk surface density. Our estimates are mostly consistent with expectations,
although Chiang et al. (2009) found Fomalhaut b to have an upper mass limit of
3 Mjupiter, which is 60% lower than our lowest estimate of 5 Mjypiter. Nonetheless,
considering the crudeness of Equation (4.3), this discrepancy does not rule out the

possibility that Fomalhaut b formed as a result of disk fragmentation.
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Chapter 5

Enhancements to Cooling

5.1 Vertically Displaced Perturbation

We now consider the case where the temperature perturbation is no longer at
the disk mid-plane. By moving the perturbation closer to the surface, we provide a
shorter path for radiation to escape. This will consequently decrease the cooling time.
If this situation arises due to an inclined orbit, then the height of the perturbation
is the “cooling-averaged” height, which would be heavily weighted to the maximum
height where the cooling is most efficient.

Since the details of the perturbation have no effect on the background solution,
the effects of moving the perturbation away form the mid-plane must be fully con-
tained within the perturbed Planck function (eq. |2.19]). We start by re-writing

Equation (2.19) in the more general form

AH+ Xdiﬁ. dAH
gdiﬂC I{diff dr )

1 o
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where

—-AH_ (t<7)
AH =

AH, (r>1)

with AH, = AH(7y), AH_ = AH(—7p), and 7’ the optical depth coordinate of the

perturbation. The cooling time (eq. [2.5]) takes the form

1 & 11 M™/B\* AB
Leool = 7 T e ————dr . (52)
16y —10T4 x B,, AH, +AH_

—70

Note that for nonzero 7/, AH, # AH_. To find the relationship between AH, and
AH_, we use the fact that AB(7y) = AH, /g% and correspondingly, AB(—7) =

AH_ /g3 (gdiffis the same on the top and bottom surfaces, since it is unperturbed).

Thus
fdiff + gdiff(TO _ 7_/)
AH_ = AH,— . 5.3
+fd1ff _|_gd1ff(7—0 +7—/) ’ ( )
and
(i AH_ (Tj?jg + g(%f) (r <7
AB = (AH++AH_)Kdiff§(T_T,) + (5.4)

In the limit of a vertically isothermal disk (B/B,, — 1), the cooling time (eq. [5.2])

can be integrated analytically, yielding

1 2 1 Y4332 T ¥ 1
teool = — —— - 1—— —+ —= . 5.9
: 16y —10T% [ 8 fdiff ( 7'0) * 2gdiff + Rle:| (5:5)

We find that the effect of moving the perturbation away from the disk mid-plane
is to decrease the optically thick contribution to the cooling time, while the optically
thin and surface terms remain unaffected. One somewhat surprising consequence of

this result is that a perturbation placed on the surface (7' — =£7y) does not cool
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infinitely quickly, or even at the optically thin limit (unless of course the disk is
optically thin). Physically, a surface perturbation still heats the interior of the disk,
but the bulk of the extra internal energy is stored much closer to the surface (in
optical depth space) than in the case where the perturbation was on the mid-plane.
Thus, it is the surface term that dominates for moderate to large optical depths.
The results of moving the perturbation to 0.5, 1, and 2 scale heights is shown
in Figure 5-1. The limiting case of moving the perturbation all the way to the disk
surface (77 — =£7p) is also shown. We use the same stellar and disk parameters
as in Section 3. Note that while a surface perturbation has the effect of reducing
the perturbation cooling time below the critical fragmentation value of Qt.,, = 1
everywhere (and for any o > 107%), the effects at one scale height are more subdued.
Furthermore, the majority of the disk mass is—by definition—within a scale height
of the mid-plane, reducing the likelihood that a disk would begin its fragmentation
outside of that range. Therefore, a vertically displaced perturbation will probably

only reduce the perturbation cooling time by a factor of a few at the most.

5.2 Dust Settling

Another effect that can decrease the cooling time is dust settling. For temperatures
below dust sublimation (~ 1500 K), dust is by far the primary opacity source. On
the other hand, since the gas-to-dust ratio is ~ 100, most of the disk’s mass (and
thus internal energy) is stored in the gas. Consequently, if the dust has a smaller
scale height than the gas (i.e., the dust has settled), then more of the internal energy
is stored in the optically thin surface layers of the disk. In effect this changes the
mapping between the spatial coordinates and the optical depth coordinates of the
internal energy distribution.

To account for the effects of dust settling, we divide the disk into three layers:
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Figure 5-1: The cooling time as a function of surface density for a perturbation located
at the mid-plane (solid black line), at half of a scale height (dashed line), at one scale
height (dot-dashed line), at two scale heights (dotted line), and for the extreme case
of a surface perturbation (gray solid line). The critical cooling time for fragmentation
Qtcool = 1 is indicated by the bold, horizontal line. Comparisons are made at 10 AU
from a 0.5 Mg, 2.0 Ry, 4000 K star, using the dust opacity of Wood et al. (2002) and
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Figure 5-2: Sketch of our three-layer disk model, including the effects of external
illumination from both the star and 10 K background, internal energy generation,
and dust settling.

a layer of dust and gas centered about the disk mid-plane (which we call the dust
layer), and two layers of optically thin gas surrounding it on either side (which we
call gas layers). A sketch of our model is shown in Figure 5-2. For simplicity, we
assume that the disk is in hydrostatic equilibrium, and that the gas has a Gaussian
density distribution. Near the mid-plane (i.e., within the dust layer), the gas density
will be slowly-varying, and thus we will assume it is constant. Furthermore, we will
assume that the dust density is also constant within the dust layer, and that all of
the dust has settled into this layer. The gas layer has surface density >%* and optical
depth 7, = x&*X¢*. The dust layer has surface density L' = Zgu“ + 24wt and
total optical depth 27y = Y'Y — 2825382 where 22“” is the surface density of the
gas within the dust layer, and 24" is the surface density of the dust.

Given a gas-to-dust ratio o = p,/ps and dust settling hq/h,, the total surface
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density X is divided according to

Egust 1
= 5.6
by o+1"7 (5.6)
Z;lust _ 0 @ (5 7)
by o+1h,’ '
ygas 0 hd
= 1—— . 5.8
by o+1 ( hg) (5:8)

In addition, the internal energy generation is also split among the layers. Within the

dust layer, the fractional internal energy generation

HO B Edust
Htot B E
o (1 hg
_ Syl 5.9
o+1 (Q hg) ( )
while in the gas layer
Hg B Egas
Htot B E
0 hq
= —(1——| , 5.10
o+1 < hg) ( )
where
H ALY (5.11)
ot = ——QC , .
ot 3o m

is the total energy generated by viscous heating (as in eq. [2.26]).

5.2.1 Dust Layer

In addition to just stellar illumination, the external radiation field (i.e., radiation
impingent on the dust layer) now needs to include the effects of radiation from the
gas layers. In addition, we use this opportunity to add in the effects of a background

radiation field (i.e., a 10 K black body corresponding to the interior of a giant molec-
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ular cloud). This background radiation field plays the role of setting a minimum
temperature within the disk when both stellar illumination and viscous energy gener-
ation are weak. Studying the effects of a background radiation field is also interesting,
because it allows for the potential inclusion of more exotic effects (e.g., a nearby OB
association).

To account for these new sources of radiation, we split the external radiation into
three components: star which corresponds to stellar irradiation, surface (or surf)
which corresponds to radiation from the gas layers, and background (or bg) which
corresponds to the 10 K background. The solutions to these radiation fields are
identical to the external field found in Equations (2.14) and (2.15), with the exception
that £t — xS xsWlor P8 (referring to the opacity of each respective radiation
field within the dust layer). In addition, each new field has unique solutions to the

boundary conditions fster, fswf  gbe  pstar  prswf and HPE Thus,

sinh 3%t 1
Hstar — star 512
O ginh @stary, ’ (5.12)
inh ﬁsurf,r
Hsurf — Hsurf S 5.13
O ginh gswtr, ( )
sinh g8
o = HF——— 5.14
O sinh gber, ( )
and
Jstar _ _Bstarxdiff star cosh ﬁstarT (5 15)
Kstar 0 sinh BstarTO ) '
6suerdiff ; cosh BsurfT
Jsurf - _ s 5.16
H;surf 0 Slnh 6surf7_0 ? ( )
Jbg . 6ngdiH bg cosh ﬁbgT (5 17)

kbe 0 ginh gber,
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where

=<

star star
star K
6 - diff V Xstar fstar ) (518)
surf [ .surf
urf K 1
BS - diff Xsurf fsurf ) (519)

>0

>

>

bg bg 1
bg __ X R
pe = yiff \/ xbe fbe (5.20)

The solutions to the expanded set of boundary conditions is given in Appendix A.
The diffuse radiation field is also similar to the single layer model, with the excep-
tion that it now includes three terms instead of one for the external radiation. The

diffuse mean intensity (eq. [2.17]) becomes

2 2
G 5 — T 1 70 — | 7| 1
J = Ho (QfdiffTo + gdiff) +AHo ( fiff T gdiff
_ pystar cosh 357y — cosh 5% 1 N 1
0 ﬁstarfdiff sinh Bstar,]—o gdiﬁ
_ ppsut cosh 37, — cosh B r 1
0 ﬁsurffdiff sinh 6surf7-0 gdiff
e (COSh 381, — cosh 38T 1 )
—H; :

3be fdiff ginh Bber, + gdiff (5.21)

and the Planck function in the dust layer becomes

Xdiff HO I{star Hsurf diff

bg
dust __ 7diff star surf K b, X
Bt = ydift o S g 2 g AHG(T) L (5.22)

o diff To

The perturbed Planck function in the dust layer remains unchanged from Equa-

tion (2.19) (or eq. [5.4] for a vertically displaced perturbation).
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5.2.2 Gas Layer

Since the gas layer is optically thin, the mean intensity is set by the impingent
radiation from the star, the 10 K background, and the dust layer, plus local internal
energy generation (we assume that the contribution from reprocessed radiation is
negligible). For simplicity, we assume that the gas layer has gray opacity. It follows

that the mean intensity for the gas layer

as H, 279 + T, ol
J® = 2, {1 + exp <_%>} + Q;g [1 + E2(2To + Tg)]
H, — Hstar . Hsurf . Hbg AH
+ - ° gdiﬂ ° ° gdiﬂo ) (523)

where Ej is an exponential integral and Tj,, = 10 K is the temperature of the back-

ground radiation field. Assuming radiative equilibrium, the Planck function in the

gas layer
gas ]
Bees — Jeas X 29 (524)
KE3S T,
Note that the perturbed Planck function
as AHO us
AB® = AT = AB™(ry) (5.25)

is set by ABYt at the top of the dust layer, regardless of whether the perturbation

is located at the disk mid-plane, or is displaced as in § 5.1.

5.2.3 Cooling Time With Dust Settling

There are three contributions to the excess internal energy, and thus the cooling
time: 1) gas in the dust layer, 2) dust in the dust layer, and 3) gas in the two gas

layers. In addition, each of these contributions is weighted by the specific heat of

40



their constituents. The cooling time (eq. [2.3]) becomes

y B 1 kg { 1 ?
el Am(AH, + AH_ ) mp [ pig(75 — 1)

1 %0
4 ATdust dustdz
maba—1 ), =
1 / o
TR S— ATgaSpganz] , (5.26)
frg(vg — 1) 20 !

0
ATdUStPSUStdZ

—Z0

where 14, 74, and p, are the mean molecular weight, adiabatic gas constant, and
density for the gaseous component of the disk. The same quantities with a d subscript
correspond to the dust component of the disk. Similarly, the dust and gas superscripts
refer to the corresponding layer. The z-coordinate of the top/bottom of the dust layer
is %2zp.

Since the dust component is the dominant opacity source, we make the simplifi-
cation that Xy% = ¥,v4, where x4 is the opacity of the dust component. Thus, in
the dust layer, dr = xapadz = (X/Za)x W padz. Since p,/pa = Lyha/Xahy, and using
Equation (2.4) to express AT in terms of AB,

1. <&E + &(ﬁd) /TO <ﬂ>3/4 —ABdUSt dr
XA\ X h, X B, AH, +AH_

—70
ygas [/ peas —3/4
=] o

where we have allowed for a vertically displaced perturbation (recall H, = H_ = H,

1 2 1

m

16y —1oT%

tcool

if the perturbation is at the mid-plane). In addition, we have assumed that the gas
component dominates the internal energy of the disk, and thus v, = v and p4 ~ p.

The factor
-1
by M( Y )

pa(va—1) 528

is the relative contribution of the dust to the specific heat of the disk. Note that

while the contribution of the dust to the internal energy is in general trivial, in the
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limit of extreme dust settling (hq/h, — 0) this term can become dominant.

If we assume that the dust grains follow the Debye model, then

3
1) (R) @<
Ya—1

(5.29)
3 (T, > 1Tp) ,

where Tp ~ 700 K (for interstellar dust grains) is the Debye temperature (Andriesse,
1977). For a gas-to-dust ratio o = 100, and assuming u(y—1) ~ 1 and pg ~ 30; ¢g ~
10(T;,/Tp)? in the low-temperature limit, while ¢g ~ 0.1 in the high-temperature
limit.

We now evaluate Equation 5.27 for different degrees of dust settling. We use
Y& = K8 = 10~ to ensure that the gas layer remains optically thin over the range
of surface densities considered. While this is probably an underestimate, we note
that the perturbation cooling time is only weakly dependent on the value of the gas
opacity, so long as the gas layer has a much lower optical depth than the dust layer.
In addition, we use the scale height of the dust layer to determine p,, noting that this
leads to an increasingly shallow angle of incidence as dust settling progresses. We
assume that the disk flaring continues to follow hy o< /4, independent of the degree
of dust settling

The effects of dust settling are illustrated in Figure 5-3. Shown are the pertur-
bation cooling times when hy/h, = 1 (unsettled), 0.5, 0.1, 0.01, and 0 (completely
settled). Note that when hy/h, < 0.1, the disk is below the critical cooling time for
a greatly increased range of surface densities (assuming o =~ 0.1).

As dust settling proceeds below h;/h, =~ 0.1, the perturbation cooling time ac-
tually begins to increase for the largest surface densities. This behavior is due to
the increasing amount of excess internal energy that is stored within the gas layers.

Since the optically thin gas layer is isothermal, the perturbation cooling time is longer
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Figure 5-3: The perturbation cooling time as a function of surface density for a disk
with no dust settling hy/hy = 1 (solid black line), for hq/h, = 0.5 (dashed line), for
ha/hy = 0.1 (dot-dashed line), for hy/h, = 0.01 (dotted line), and for the extreme case
haq/hy = 0 (gray solid line). The critical cooling time for fragmentation Q.o = 1 is
indicated by the bold, horizontal line. Comparisons are made at 10 AU from a 0.5 M,
2.0 Ry, 4000 K star, using the dust opacity of Wood et al. (2002) and o = 0.1.
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than it would be if there were a temperature gradient (as there is in the dust layer).
Note that if ¥ is allowed to increase to high enough values, the disk will eventually
return to the opacity-independent, self-heated limit (eq. [2.29]), although since this
only occurs after dust sublimation begins, we do not consider this limit further. A
comparison of the effects of dust settling on maximum surface density for fragmenta-
tion Yax (the locus Qteoor = 1) at 1, 10, and 100 AU is shown in Figure 5-4. Note
that X,,,x is maximized when hy/hy ~ 0.1, but any significant degree of dust settling
(ha/hy < 0.3) serves to significantly increase X, compared to the unsettled case.
Of additional interest is the case where the disk is both settled and harbors a
perturbation offset from the mid-plane. By changing the mapping between the dust
and gas scale heights, a perturbation located at one gas scale height can simultane-
ously be at many dust scale heights, and thus behave as if it were at the surface.
An example of this case is examined in Figure 5-5, where the perturbation is at one
gas scale height, and hg/h, = 0.5, 0.1, and 0.01. Unsurprisingly, even modest dust

settling is sufficient to keep Qtq,o < 1 for all ¥ < 103,
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Figure 5-4: The maximum surface density for fragmentation, ¥,,., as a function of
the dust settling hq/h, for a 0.5 Mg, 2.0 Ry, 4000 K star at 1, 10, and 100 AU (solid,
dashed, and dotted lines, respectively).
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Figure 5-5: The cooling time as a function of surface density for a perturbation
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ha/hy = 0.5 (dashed line), for hy/h, = 0.1 (dot-dashed line), and for h,/h, = 0.01
(dotted line). The unmodified perturbation cooling time is given by the black solid
line for comparison. The critical cooling time for fragmentation Qf.,, = 1 is indicated
by the bold, horizontal line. Comparisons are made at 10 AU from a 0.5 My, 2.0 R,
4000 K star, using the dust opacity of Wood et al. (2002) and o = 0.1.
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Chapter 6

Consequences of Dust Settling

In this chapter, we use our technique for calculating perturbation cooling times to
explore a range of stellar and disk parameters to determine which systems are the best
candidates to form giant planets via disk fragmentation. We use the three-layer model
described in § 5.2 with viscosity parameter a = 0.1, & = k% = 10~* cm g2, and
with the dust opacities of Wood et al. (2002). Since disks are most massive during
the pre-main sequence phase (Vorobyov, 2009), we use the evolutionary tracks of
Siess et al. (2000) to find the appropriate luminosity as a function of age for low- to

intermediate-mass stars.

6.1 Instability Limits

In Figures 6-1-6-3, we plot ¥, and Y.;, following the approach of § 4.2 for
0.1, 0.2, 0.5, 1, 2, and 5 M at ages of 0.5, 1, 5, and 10 Myr. Figure 6-1 shows
the case with no dust settling (i.e., hq/h, = 1), Figure 6-2 shows a case with partial
dust settling (hq/hy = 0.5), and Figure 6-3 shows a case with significant dust settling
(ha/hy = 0.1). Since the perturbation cooling time depends on the stellar luminosity,
Ymax 18 a function of age. However, the effect on the minimum fragmentation radius

is only of order 10%, indicating that the stellar age has little effect on the instability
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criteria (however the increased disk mass when the system is still young remains
important). In addition, when dust settling is significant, the age-dependence of the
perturbation cooling time vanishes, since the shallow angle of incidence for the stellar
radiation causes it to be completely absorbed within the gas layers. Furthermore, a
dust-settled disk will be well into the self-heated limit at X, further reducing the
effect of the stellar illumination.

The most striking consequence of dust settling is the greatly increased range of
disk radii and surface densities where fragmentation is allowed. The maximum surface
density for fragmentation ¥, is enhanced by several orders of magnitude when
the dust has settled to a tenth of the gas scale height (hq/h, = 0.1) compared to
the unsettled case. More importantly, the minimum fragmentation radius moves
approximately an order of magnitude closer to the star. This consequence is further
explored in Figures 6-4-6-6.

We plot 7., the minimum radius where fragmentation is allowed, for no dust
settling (hq/hy, = 1) in Figure 6-4. Figure 6-5 shows the case with partial dust
settling (hq/hy = 0.5), and Figure 6-6 shows the case with significant dust settling
(ha/hy = 0.1). Clearly, dust settling has a significant effect on the location of the
minimum fragmentation radius. Note the slight spread due to the differing stellar
luminosities arising as a result of age.

We can find € at re, Qcie, by simultaneously satisfying the conditions Qyiiteoor =
1l and Q =1 (eq. [1.1]). If we assume that f.,. is between the optically thick and
self-heated limits, which have the same scalings (see eqgs. |2.22] and [2.25]),
diff y22
T3

m

X

(6.1)

tcool X
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Figure 6-1: Surface density limits for disk fragmentation with no dust settling for 0.1,
0.2, 0.5, 1, 2, and 5 M pre-main sequence stars. The solid lines denote the maximum
surface density for fragmentation >,,,,, while the dashed lines denotes the minimum
surface density for fragmentation, ,;,. Disk fragmentation is only allowed in the
region Y.y > Xmin, Which is shaded gray. Light gray lines and shading correspond to
a 0.5 Myr old pre-main sequence star, with increasingly darker gray lines and shading
corresponding to 1, 5, and 10 Myr old pre-main sequence stars.
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Then, from the condition @ = 1, we find that ¥? oc Q2. T,,,. Thus,

crit
TT?L 1/3
chit X (W) . (62)

The opacity x&f is a function of temperature, where Y3 oc T for the dust model
of Wood et al. (2002). We see that Q. is a constant that depends only weekly on
mid-plane temperature.

Figures 6-4-6-6 also allow us to explore how r;; scales with stellar mass. A good
zeroth order approximation is to assume that r. oc M3, corresponding to the scaling
of a constant-period Keplerian orbit with mass (i.e. Q¢ is a constant independent of
M,). However, we see that this assumption is only true when the perturbation cooling
time becomes independent of the stellar illumination (i.e., for the case of significant
dust settling where the stellar radiation is completely absorbed within the gas layers
and the disk is strongly self-heated). In the cases of zero to partial dust settling, the
stellar illumination is important, and r.; has a somewhat more shallow slope. While
this effect is limited to a ~ 10% error for low- to intermediate-mass stars, caution

should be used when extrapolating to high-mass stars.

6.2 Range of Fragment Masses

Next, we explore the ranges of fragment mass expected to be produced by the pa-
rameter space covered in Figures 6-1-6-3. Using Equation (4.3), we plot the minimum
fragmentation masses produced by 0.1, 0.2, 0.5, 1, 2, and 5 M, stars with ages 0.5, 1,
5, and 10 Myr and with no dust settling (hy/h, = 1) in Figure 6-7. The cases with par-
tial dust settling (hq/h, = 0.5) and significant dust settling (hq/h, = 0.1) are shown
in Figures 6-8 and 6-9, respectively. While the fragment masses shown here are only
order-of-magnitude estimates, they can nonetheless help shed light on whether the

disk fragmentation mechanism favors the formation of giant planets, brown dwarfs, or

95



binary stars. The obvious general trend is that lower mass stars produce lower mass
fragments. Also of note is that while dust settling increases the range of radii where
disk fragmentation is viable, it also slightly reduces the minimum fragment mass at
a given radii. This later effect is due to the reduced mid-plane temperature caused
by having less viscous energy generation occur within the optically thick dust layer.
Nonetheless, it seems that disk fragmentation can only form giant planets for low- to
intermediate-mass stars, with the more massive stars (i.e., 2 5 M) forming brown
dwarfs, and high-mass stars likely forming binaries. Also note that even if a fragment
starts within the giant planet regime, it may proceed to accrete enough additional
material to ultimately become a drown dwarf (Kratter et al., 2010).

Another interesting feature of Figure 6-9, is the sharp increase in fragment mass
that occurs near the minimum fragmentation radius 7. However, we point out that
local surface densities of order 10* g cm~2 would be required for a disk to fragment
under these conditions. While not impossible, such a large surface density could only
come about as a result of significant local mass loading in the disk. Nonetheless,
this provides a means by which low-mass stars can form surprisingly massive giant

planets.

6.3 HR 8799 Revisited

Recall that we concluded in § 4.3 that HR 8799 ¢ and d where unable to form at
their current locations via disk fragmentation. However, Figure 6-3 indicates that it
would, in fact, be possible for the disk to fragment at these radii, given significant
dust settling (hg/h, =~ 0.1). However, we point out that fragmentation under these
conditions would likely produce brown dwarfs rather than giant planets (see Figure 6-
9). Thus, our conclusion remains that HR 8799 c¢ and d likely did not form in situ

through disk fragmentation.
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Chapter 7

Summary

The primary topic of this thesis was the calculation of the cooling time for a point-
like temperature perturbation in a circumstellar disk. This cooling time determines
whether a Toomre @@ < 1 disk is able to fragment, where the critical perturbation
cooling time is given by Q.0 < 1.

To this end, we have developed an analytic technique for determining ¢, (eq. [2.20]).
In addition, we have provided two useful analytic limits: Equation (2.21) for verti-
cally isothermal disks (i.e., dominated by external illumination) and Equation (2.29)
for self-heated disks (i.e., for significant viscous heating due to large surface density).
We found that when self-heating dominates, the perturbation cooling time becomes
a constant independent of opacity. For cases where {a 2 0.3, a disk would satisfy
the cooling criteria for fragmentation for all surface densities. When {a < 0.3, the
maximum surface density that satisfies the cooling criteria is set by Equation (2.21).
An interesting consequence of this result occurs when gravitational turbulence is the
primary source of viscosity (i.e. in a disk that is beginning to fragment). In this case,
a — 1, and the cooling constraint remains satisfied for all surface densities. In other
words, once a disk begins to fragment, it will keep fragmenting (as long as Q < 1).

To test the validity of our simplifications, we compared our analytic result with a
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numerical Monte Carlo code, finding good agreement. The largest discrepancy occurs
for intermediate optical depths where our assumption of constant Eddington factor
begins to break down. Fortunately, since fragmentation is only likely to occur in a
disk massive enough to be optically thick, this issue is minor.

We used these cooling times, along with the observed stellar parameters of Fomal-
haut, HR 8799, and HL. Tau, to test the viability of the disk fragmentation mechanism.
We found that in each of these systems, at least one planet could have formed in situ
as the result of fragmentation, assuming the disk mass interior to those planets fell
within a particular range as indicated in Table 4.2.

While our initial cooling time calculations would appear to indicate that there
is a maximum surface density above which fragmentation cannot occur, there are
other effects that can decrease the cooling time. We considered two of these effects:
1) perturbations displaced from the disk mid-plane, and 2) dust settling toward the
mid-plane. An expression for the perturbation cooling time including both of these
effects was given in Equation (5.27). To account for these effects, along with the
addition of uniform background illumination (i.e., from a surrounding 10 K cloud
core), we modified our original one-layer model to include three layers: a central gas
and settled dust layer surrounded on both sides by an optically thin, gray, pure gas
layer (potentially of negligible size when there is no dust settling).

We showed that the effect of a vertically displaced perturbation tends to be limited
to a factor of a few reduction in the perturbation cooling time, unless the perturbation
is displaced by more than a scale height. The effect of dust settling, however, was
much more pronounced. In particular, for hq/h, < 0.1, a disk will be below the
critical cooling time for all realistic surface densities beyond the critical radius 7.
(with the exact required value for h;/h, depending on the value of (). In other
words, with sufficient dust settling, Q < 1 becomes the only relevant requirement for

disk fragmentation beyond the critical radius. Additionally, by combining a displaced
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perturbation with dust settling, the critical value of hy/h, is reduced even further.

Next, we used our three-layer model to explore a range of stellar and disk param-
eters in order to show the effects of stellar age, mass, and degree of dust settling on
the viability of disk fragmentation via the gravitational instability. We found that
age has only a minor effect on the limits of disk fragmentation, particularly when the
dust is well-settled.

In general, stellar mass serves to set the scale of the fragmentation region. How-
ever, the scaling is shallower than the typical zeroth order approximation indicates.
Thus, care should be taken to extrapolate our results to high-mass stars.

While partial dust settling settling (hy/h, = 0.5) can move the critical fragmenta-
tion radius, e, inward by about 25%, significant dust settling (hq/h, = 0.1) moves
the critical radius in by about an order of magnitude.

Finally, we used our technique for calculating fragment masses (eq. [4.3]) to in-
vestigate where the disk fragmentation mechanism forms giant planets versus brown
dwarfs. Not surprisingly, low-mass stars are more likely to form giant planets while
intermediate-mass stars are likely to form brown dwarfs (it follows that high-mass
stars probably form binary companions). However, if the disk fragmentation occurs
in the presence of dust settling, then slightly less-massive fragments are formed (by a
factor of a few times 10%), except in the regions closest to 7y, where the fragment
mass is greatly increased.

In conclusion, the gravitational instability remains a viable mechanism for the
formation of giant planets: the perturbation cooling time can be sufficiently short to
allow disk fragmentation over a range of realistic conditions, and geometrical effects,
such as dust settling, further reduce the perturbation cooling time to the extent that

cooling is sufficient for all realistic surface densities.
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Appendix A

Boundary Conditions

A.1 One-Layer Model

In order to calculate the unknown constants fe<t, Hext, f4ff - and g4iff we utilize
the boundary conditions
Kext(o)
ext I
= Al
™= e -
Hy* = Hp%(m) , (A.2)
) Kdiﬁ(o)
fdlﬂ" — Ii 7 (A?))
J3(0)
H () = Hi"(r), (A.4)

respectively, where the /-subscript on the intensity moments indicates that they come
from solving the transfer Equations (2.6) and (2.7), which are then used to calculate
the moments J, H, and K. For simplicity, we assume that f* and f3f are in-
dependent of depth. Note that while a seemingly more straight-forward alternative
to Equation (A.4) is g8 = HYT(7y)/J4E(7,), we have found that Equation (A.4)
produces a more accurate solution, since J4(7) has a larger error arising from the

assumption of constant Eddington factors than HYf (7)) does.
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Using Equations (2.8) and (2.9) for the source functions S and S4 the intensity

moments are

H* ext TExt
JE(0) = —exp< ) / SO (1) By (1) dt

fh

ext

H* ext bHext T
= —Zexp (—TO > - / cosh bt By (t) dt

s s Kkt sinh By

ext

ext 70
KFX%O) = M*H* exp <—TO ) +/ SeXt (t) E3(t> dt
0

ok

(A.5)

Fext ot pext 5
— . H, _ 20 — 0 hbt Es(t) dt A6
: exp( u*) et SinhﬁTo/ coshir Bt (A0
H, ext 1
HY (1) = _7< — eI ) 4 / Se’“( 5 —t) Ea(t) dt
0

1 gext bHext 27t -
e / cosh b(rS* — t) Ey(t) dt .

and

T0 .
JHE0) = /0 SHE () By (t) dt
1 To 1
= {HO( T fdlff )
1 1 cosh g1 o
—H : . Ey(t)dt
0 (gdlﬁ—i_ﬁfdlﬂrsinhﬁm)} /0 1()
H, oo,
_ t“ By (t) dt
2 fdiffr, /o 1)

1 ngt 70
— (ﬁ — ﬁfdiff) Sk 57'0/0 cosh Bt By (t) dt
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70

KET(0) = /O ST (1) Ey(t) dt
1 T0 1
1 1 cosh 1 o
_ fext : : Es(t) dt
0 (Qdﬂ B sinhﬁm)] /0 {0
—i/mtzE (t) dt
2fdiftry o ’

1 ext 70
N (/6 - deiﬁ) Sin}fﬁﬂ] /0 COShﬁt E3(t) dt ) (A9)

270
H?iH(To) = / Sdiff (7'0 — t) EQ (t) dt

0
1 1
(a7
1 1 cosh By 270
ext
_HO (gdiff + ﬁfdiff sinh 57'0 )} /0 E2 (t) dt

HO 270 HO 270 )
— t Ey(t) dt — t“ Eo(t) dt
Fagar J, BO@ =gz [ R EG)

_1 (ﬁ B 1 ) ngt
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where E), E,, and Fj are exponential integrals, 75 = (x*/x4f)7, and b =
(xET /x> 3. Note that all of the above integrals involving E;, F,, and Ej3 can
be solved analytically (see Appendix B). The Eddington flux from the star incident

on the disk is

e (R.\°
H === T4 A1l
47r(r)0* ( )

where 1, is the cosine of the angle between the disk normal and the star, and R, and

T, are the stellar radius and effective temperature.

68



To find ¢, Hext, f4and g4 we assume starting values of 2, —H, /2, 1/3, and
1/2, respectively. We then evaluate Equations (A.1)—(A.4) analytically and iterate
until convergence. For temperature-dependent quantities (i.e. opacity), we use the

mid-plane temperature, which is also calculated iteratively.

A.2 Three-Layer Model

In the three-layer model described in § 5.2, the external radiation field is split into
three components: direct stellar irradiation, radiation from the two optically thin gas

layers, and 10 K background radiation. The star intensity moments are

H
J3P(0) = —Zexp (—
i I
o

Kstar SiIlh 6star7-0

star
Totar 4 Tg>
i

star  pstar [rstar TStar
0

/ cosh Bt By (1) dt . (AL12)
0

star
K?tar (O) — /_I,*H* exp (_Tolu——i_Tg>

star

O_star bstarHstar 0
— h 6"t B3 (t) dt A.13
Hstar sinh BstarTO A cos 3( ) ) ( )
H* star
H?tar(,]_o) _ _7 (1 . 6—27'0 /M*) e—Tg/M*
1O.star bstarHStar

2 Hstar sinh ﬁstarTO

2Tgtar
X / cosh ™ (755" — t) By (t) dt | (A.14)
0

where 758 = (st /x4 7y and pstar = (il /ystarygstar - The surface intensity mo-

ments are

69



T0) = 5 [Ba(r) — Ba(rg 4 7,)
O.surf bsuersurf surf

Hsurf sinh ﬂsurfTO

K3(0) = 55 [Ey(r5"™) = Ba(g"" + 7))
O.surf bsuerSurf

Ksurf sinh ﬁsurfTO

surf
0

Sees 1 sur ur
HP() = 25 |-5 + Ban) + B2 - Ban 4 )
1 O.surf bsuerSurf

2 ,isurf sinh ﬂsurfTO

27.Osurf
X / cosh 0™ (75 — ¢) By (t) dt |
0

where 7_gurf — (Xsurf/Xdiff>T0, bsurf — (Xdiﬁ/Xsurf)ﬁsurf, and

, H, 210 + T, oT*
geas 1 9 — 1+ E5(2
2 oo ()] s e
_|_HO _ Hgtar _ ngrf _ H(l])g N ﬂ
gdiff Tg '

The background intensity moments are

oT?
ng EQ(T(I))g + Tg)

JE0) =

b be
o.bg bbg HO g

To
_—/ cosh bP8t By (t) dt ,
0

kP8 sinh 387,
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/ cosh b™" 't B (t) dt |
0

/ cosh 0"t E5(t) dt
0

(A.15)

(A.16)

(A.17)

(A.18)
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oT?
K7#(0) = ngEz;(T(?ngTg)
obs bbgHgg 70*
VI h P8t Es(t) dt A.20
kP8 sinh Bbsr /0 o8 s(t)dt ( )
oT?
Hf(m) = <2 [~Ea(r,) + Bs2m® +7,)]

1o bbgH(}))g 2r0" bg (. bg A
- 7 70 hbd — 1) Es(t) dt 21
QMMM@%A cosh B8 (n% — 1) By(t)dt,  (A.21)

where T(]]Dg = (x"%/x¥) 7y and b8 = (x4 /yb8)Pe,
The diffuse intensity moments are now modified by the addition of the two gas
layers and the background radiation field. The modified diffuse intensity moments

are
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Appendix B

Integrals Involving Ey, Ey, and Ej

B.1 Integrals Involving F;

/ 2B dt = g 9B, (2) — 20Es(2) — 22 Fa(x)

sinh ax

/coshatEl(t)dt = Ei(x)
0

Ei[(1 4 a)z] — By [(1 — a)z] + In (122)

+

2a

B.2 Integrals Involving F,
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3
/ 2By dt = % 9B (2) — 20Es(2) — 22 Fs(x) (B.6)
/ “coshat Byt dt = ST p )+ COS;“I Ei ()
B [(I+a)r] + E1[;22— a)z] + In(1 — a?) (B.7)
/21 cosha(x —t) Ey(t)dt = sinh ax Ey(2x) + sinh az COS;CM Ei(2x)
o <E1 2(1 +a)z] + In(1 + a))
¢ 2a?
- (E1[2(1 — a)2922+ In(1 — a)) (B.3)
B.3 Integrals Involving Fj3

/: By(t) dt = % _ By(a) (B.9)
/w LB, (1) di = 411 — By(x) — 2Ex(z) (B.10)
/x t*Es(t) dt = g — 2E¢(7) — 20 E5(x) — 2° Ey(x) (B.11)
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r sinh azx cosh ax sinh az 1
/0 coshat E3(t)dt = Es(x) + e Es(x) + 3 Ei(x) — =
Eil(1+a)x] — Ey[(1 — a)x] + In (e
R O R (T RS = B

2a3
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